
User Needs and Design Opportunities in
End-User Robot Programming

Gopika Ajaykumar
gopika@cs.jhu.edu

Johns Hopkins University
Baltimore, MD 21218, USA

Chien-Ming Huang
cmhuang@cs.jhu.edu

Johns Hopkins University
Baltimore, MD 21218, USA

Abstract
We report on a user study that sought to understand how users pro-
gram robot tasks by direct demonstration and what problems they
encounter when using a state-of-the-art robot programming inter-
face to create and edit robot programs. We discuss how our findings
translate to design opportunities in end-user robot programming.

Keywords
End-User Robot Programming; Programming by Demonstration

ACM Reference Format:
Gopika Ajaykumar and Chien-Ming Huang. 2020. User Needs and Design
Opportunities in End-User Robot Programming. In Companion of the 2020
ACM/IEEE International Conference on Human-Robot Interaction (HRI ’20
Companion), March 23–26, 2020, Cambridge, United Kingdom. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3371382.3378300

1 Introduction
The increasing emergence of assistive and collaborative robots in
everyday human environments, such as schools, hospitals, and
homes, has the potential to greatly increase quality of life by en-
abling robotic assistance with daily living tasks, tedious errands,
and difficult or unfilled jobs. For robots to assist to their fullest
abilities in these capacities, they must be capable of adapting to
changing demands, environments, and scenarios. However, develop-
ing a robot that can autonomously respond appropriately to every
possible situation is currently an intractable problem. End-user
robot programming offers an alternative approach that facilitates
the integration of assistive and collaborative robots into human
environments in the short term.

Research in end-user robot programming seeks to enable end-
users, including those without a technical background, to easily pro-
gram a robot to perform custom tasks with contextual constraints
[5]. One of the most common robot programming paradigms that
has emerged is Programming by Demonstration (PbD), also known
as Learning from Demonstration (LfD) or imitation learning [4, 6, 7].
For the PbD method of robot programming, end-users can demon-
strate or teach a robot skills and the application of skills to different
task configurations (e.g., [2, 8, 16, 26]). Several different modalities
for providing these demonstrations have been explored, such as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HRI ’20 Companion, March 23–26, 2020, Cambridge, United Kingdom
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7057-8/20/03.
https://doi.org/10.1145/3371382.3378300

Figure 1: Users face various difficulties when using a state-
of-the-art interface to program a collaborative robot. This
report describes these difficulties and discusses design op-
portunities for future robot programming interfaces.

kinesthetic teaching [1, 11, 18], natural language [14, 15, 17, 22–24],
video-based demonstrations [8, 25, 26], visual programming inter-
faces [3, 10, 13, 19], situated specification [9, 21], and teleoperative
demonstrations through motion capture [12, 20] and virtual reality
[27]. Among these methods, kinesthetic teaching enables end-users
to program a robot by physically guiding it through a task, whereas
visual programming allows a user to specify a robot program graph-
ically. Today, PbD is often implemented as a hybrid of kinesthetic
teaching and visual programming. Below we report on a user study
that sought to examine the ease of use and learnability of one such
composite interface, Universal Robots’ Polyscope (Figure 1).

2 User Experiences in End-User Robot
Programming

To explore user experiences in programming a collaborative ro-
bot, we designed four common manipulation tasks, which involved
stacking, hanging, and pouring task objects such as blocks, cups,
and towels, and asked participants to complete the tasks with a
UR-5 6-DOF robotic arm. Participants were instructed to use kines-
thetic teaching to program the robot and were free to use either
continuous trajectories, waypoints, or a combination of both during
the programming process.

Following informed consent, the participant was provided with
a tutorial on how to use the state-of-the-art programming interface
for the UR-5, the Polyscope interface on the teach pendant device
that comes with the robot. They were then asked to program a
practice pick-and-place task. After completing the practice task, the
participants completed four tasks using the programming interface.
For the purposes of the study, the participant could correct the
program as many times as they wanted until they were happy with
the task result. The participant was stopped, regardless of their
progress, fifteenminutes before the hour to complete an open-ended

https://doi.org/10.1145/3371382.3378300
https://doi.org/10.1145/3371382.3378300

interview and demographics questionnaire. The study was video
recorded, and participants received $10 USD for study completion.

Eight participants (6 females) were recruited for the study, with
ages ranging from 19 to 57 (M = 31.13, SD = 16.22). Participants
came from various backgrounds and disciplines and had varying
degrees of experience in programming and technology.

2.1 Observations and Findings
Below, we summarize key observations and findings from our study,
highlighting user frustrations and challenges in specifying and
editing robot programs.

Challenges with Programming Interface. The majority of our ob-
servations from the user study and interview related to problems
users foundwith the programming interface. In particular, we found
that participants had a poor mental model of their programs, espe-
cially those that involved waypoints. This problem led to partici-
pants being unpleasantly surprised by the results of their programs.
For example, one participant thought that trajectories between way-
points were recorded and represented actual paths that the robot
would later trace through. Such inadequate understanding often
led to a task failure or unexpected collision with obstacles.

Nevertheless, participants preferred waypoints to recording con-
tinuous trajectories, as they found that using the path recording
command built in Polyscope required a high cognitive load since
they had to keep track of several steps to complete the recording.
Two participants forgot to record the path during one of the tasks,
which required keeping track of several task steps and may have
made keeping track of all the recording steps even more difficult.

Participants also thought the programming interface could be
visually and spatially improved. Some participants found the tab
structure of the Polyscope interface confusing, especially towards
the beginning of the study, since it separates robot action selec-
tion from robot action parameter specification. One participant
suggested that it would be more intuitive for command selection
and editing to be located in one central location. Similarly, a few
participants found that there was irrelevant or redundant informa-
tion on the screen. One participant suggested that the use of color
could help with visual organization, especially considering that the
current interface is largely monochrome.

Challenges with Kinesthetic Teaching. Three participants directly
mentioned how difficult programming the robot using kinesthetic
teaching can be during the interview, while some participants con-
veyed this indirectly when they expressed tiredness while program-
ming the demonstration or when they showed reluctance in, or
even decided to forego, correcting their incorrect programs. In ad-
dition, participant fatigue during kinesthetic teaching resulted in
extraneous movements and lag time, where no movement occurred,
in most of the participants’ programs using continuous recording.

Challenges with Program Editing. We also observed aspects re-
lated to how the process of making corrections to a program could
be improved. Two participants mentioned that it was hard to correct
the program without having any visualization of the demonstration
to refer to. They said that it would have been useful to have a 3-D
visualization of the entire path during corrections. Furthermore,
several participants wanted to check their work in the process of
programming, or even wanted to view the result of the program be-
fore editing, but there was no easy way to do this with the Polyscope

interface. Similarly, one participant mentioned that it would have
been useful to have a feature that could easily bring the robot to a
specific point in the program. In a similar vein, participants com-
mented that there is no easy way to undo actions by restoring the
state of the program before adding a command using the current
interface. Without these capabilities, users were often forced to
restart the demonstration from the beginning to make a correction,
which they found difficult and frustrating.

3 Design Opportunities in End-User Robot
Programming

Based on the observations and feedback we received from par-
ticipants, we identified several design opportunities for end-user
programming interfaces.

Program Visualization and Interface Organization. End-user pro-
gramming interfaces should have some form of 3-D visual repre-
sentation of robot programs to help users form and preserve ap-
propriate mental models of their demonstrations, especially those
involving waypoints, since waypoints can be confusing without
visualization of their locations and surrounding context. Effective
end-user programming interfaces should also minimize prerequisite
and requisite steps for programming by including simple "one-step"
programming actions and commands to minimize cognitive load
for users. Interfaces should minimize use of tabs and keep similar
actions and commands coherently grouped together. They should
organize information in a manner such that items irrelevant to the
task do not contribute to visual clutter. Color could be a useful tool
for structuring information in interfaces, though it should not be
over-relied upon since not all populations are able to see all colors.

Editing and Debugging Capabilities. Visualization is not only
critical to the process of specifying robot programs but also essential
to effective editing and debugging. In addition to visualizing the
full robot program, end-user robot programming interfaces should
have easy-to-use replay capabilities to visualize contextualized
portions of the robot program. Moreover, since undoing actions is a
critical part of editing and correcting, interfaces should have easy-
and quick-to-use undo capabilities. These capabilities will directly
enhance programming efficiency, allowing users to make changes
without starting over with a new demonstration.

Overall, the user experiences that we observed demonstrate
that there still remains room for improvement in current end-user
programming interfaces with respect to increasing usability and
maximizing user productivity. In addition to drawing inspiration
from user needs, the design opportunities we describe in this report
build off of existing software programming interfaces (e.g., undo,
breakpoints) and animation authoring tools (e.g., simulated preview,
trajectory illustration and editing), suggesting that designers can
draw tools from various sources to create user-centered end-user
robot programming toolboxes.

Acknowledgments

This work is partially supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant No.
DGE-1746891 and the Nursing/Engineering joint fellowship from
Johns Hopkins University.

References
[1] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz. 2012.

Trajectories and keyframes for kinesthetic teaching: A human-robot interac-
tion perspective. In Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction. ACM, 391–398.

[2] Jacopo Aleotti and Stefano Caselli. 2006. Robust trajectory learning and approx-
imation for robot programming by demonstration. Robotics and Autonomous
Systems 54, 5 (2006), 409–413.

[3] Sonya Alexandrova, Zachary Tatlock, andMaya Cakmak. 2015. RoboFlow: A flow-
based visual programming language for mobile manipulation tasks. In 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 5537–5544.

[4] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A
survey of robot learning from demonstration. Robotics and autonomous systems
57, 5 (2009), 469–483.

[5] Geoffrey Biggs and Bruce MacDonald. 2003. A survey of robot programming
systems. In Proceedings of the Australasian conference on robotics and automation.
1–3.

[6] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. 2008. Robot
programming by demonstration. Springer handbook of robotics (2008), 1371–1394.

[7] Sonia Chernova and Andrea L Thomaz. 2014. Robot learning from human
teachers. Synthesis Lectures on Artificial Intelligence and Machine Learning 8, 3
(2014), 1–121.

[8] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.
2017. One-shot visual imitation learning via meta-learning. arXiv preprint
arXiv:1709.04905 (2017).

[9] Yuxiang Gao and Chien-Ming Huang. 2019. PATI: a projection-based augmented
table-top interface for robot programming. In Proceedings of the 24th International
Conference on Intelligent User Interfaces. ACM, 345–355.

[10] Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-robot inter-
action design using Interaction Composer eight years of lessons learned. In 2016
11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE,
303–310.

[11] Micha Hersch, Florent Guenter, Sylvain Calinon, and Aude Billard. 2008. Dynam-
ical system modulation for robot learning via kinesthetic demonstrations. IEEE
Transactions on Robotics 24, 6 (2008), 1463–1467.

[12] Kaijen Hsiao and Tomas Lozano-Perez. 2006. Imitation learning of whole-body
grasps. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 5657–5662.

[13] Justin Huang and Maya Cakmak. 2017. Code3: A system for end-to-end pro-
gramming of mobile manipulator robots for novices and experts. In 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI. IEEE, 453–
462.

[14] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. 2010. Toward un-
derstanding natural language directions. In Proceedings of the 5th ACM/IEEE
international conference on Human-robot interaction. IEEE Press, 259–266.

[15] Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou, and Ewan Klein. 2002.
Mobile robot programming using natural language. Robotics and Autonomous
Systems 38, 3-4 (2002), 171–181.

[16] Alex X Lee, Henry Lu, Abhishek Gupta, Sergey Levine, and Pieter Abbeel. 2015.
Learning force-based manipulation of deformable objects from multiple demon-
strations. In 2015 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 177–184.

[17] Cynthia Matuszek, Liefeng Bo, Luke Zettlemoyer, and Dieter Fox. 2014. Learning
from unscripted deictic gesture and language for human-robot interactions. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.

[18] Carl Mueller, Jeff Venicx, and Bradley Hayes. 2018. Robust Robot Learning
from Demonstration and Skill Repair Using Conceptual Constraints. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
6029–6036.

[19] Chris Paxton, Andrew Hundt, Felix Jonathan, Kelleher Guerin, and Gregory D
Hager. 2017. CoSTAR: Instructing collaborative robots with behavior trees and
vision. In 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 564–571.

[20] Stefan Schaal, Auke Ijspeert, and Aude Billard. 2003. Computational approaches
to motor learning by imitation. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences 358, 1431 (2003), 537–547.

[21] Yasaman S Sefidgar, Prerna Agarwal, and Maya Cakmak. 2017. Situated tangible
robot programming. In 2017 12th ACM/IEEE International Conference on Human-
Robot Interaction (HRI. IEEE, 473–482.

[22] Lanbo She, Yu Cheng, Joyce Y Chai, Yunyi Jia, Shaohua Yang, and Ning Xi. 2014.
Teaching robots new actions through natural language instructions. In The 23rd
IEEE International Symposium on Robot and Human Interactive Communication.
IEEE, 868–873.

[23] Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia, Joyce Chai, and Ning Xi. 2014.
Back to the blocks world: Learning new actions through situated human-robot
dialogue. In Proceedings of the 15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDIAL). 89–97.

[24] Maj Stenmark and Pierre Nugues. 2013. Natural language programming of
industrial robots.. In ISR. Citeseer, 1–5.

[25] Yeping Wang, Gopika Ajaykumar, and Chien-Ming Huang. 2020. See What I See:
Enabling User-Centric Robotic Assistance Using First-Person Demonstrationss. In
Proceedings of the 15th annual ACM/IEEE international conference on Human-Robot
Interaction. ACM.

[26] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel,
and Sergey Levine. 2018. One-shot imitation from observing humans via domain-
adaptive meta-learning. arXiv preprint arXiv:1802.01557 (2018).

[27] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg,
and Pieter Abbeel. 2018. Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 1–8.

	Abstract
	1 Introduction
	2 User Experiences in End-User Robot Programming
	2.1 Observations and Findings

	3 Design Opportunities in End-User Robot Programming
	Acknowledgments
	References

