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Abstract

Just as end-user programming has helped make computer programming ac-
cessible for a variety of users and settings, end-user robot programming has
helped empower end-users without specialized knowledge or technical skills to
customize robotic assistance that meets diverse environmental constraints and
task requirements. While end-user robot programming methods such as kines-
thetic teaching have introduced direct approaches to task demonstration that
allow users to avoid working with traditional programming constructs, our for-
mative study revealed that everyday people still have difficulties in specifying
effective robot programs using these methods due to challenges in understand-
ing robot kinematics and programming without situated context and assistive
system feedback. These findings informed our development of Demoshop, an in-
teractive robot programming tool that includes user-centric programming aids
to help end-users author and edit task demonstrations. To evaluate the effec-
tiveness of Demoshop, we conducted a user study comparing task performance
and user experience associated with using Demoshop relative to a widely used
commercial baseline interface. Results of our study indicate that users have
greater task efficiency while authoring robot programs and maintain stronger
mental models of the system when using Demoshop compared to the baseline in-
terface. Our system implementation and study have implications for the further
development of assistance in end-user robot programming.

Keywords: Human-Robot Interaction, End-User Development, End-User
Robot Programming

1. Introduction

End-user programmers—programmers whose primary jobs do not involve
coding professionally [1]—are an increasing population that leverages the grow-
ing power of computation by writing computer programs to meet their objectives
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Figure 1: Based on user difficulties and needs that we observed in a formative study where
users used kinesthetic teaching to program a robot, we developed Demoshop, an end-user
robot programming tool that augments user capabilities in specifying motion demonstrations.
Demoshop provides user-centric programming aids in the form of continuous path discretiza-
tion, mental scaffolds, and just-in-time assistance.

regardless of their programming proficiency. Tools for end-user programming
have become widely available and are commonly integrated into a diversity of
platforms and application domains, such that most programs are now written
by end-users and not professional software programmers [2]. To date, end-user
computer programming has helped foster the development of innovative ap-
plications, the economic growth of individuals and small businesses, and the
productivity of workplaces by making automation tools accessible for a wide
range of employees [3, 4].

Similarly, end-user robot programming promises to democratize robotic as-
sistance and foster economic growth by paving the way for collaborative robots
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to enter a variety of industries, including smaller companies for which robotic
automation has traditionally been difficult to adopt because of high expenses or
insufficient programming background among employees. In recent years, manu-
facturing firms in particular have embraced end-user robot programming. Col-
laborative robots from companies such as Franka Emika and Universal Robots
can be programmed for a variety of manipulation tasks without coding and are
becoming technical drivers for flexible, smart manufacturing. As robots become
increasingly common in everyday environments, domains outside of manufactur-
ing, such as education and outreach (e.g., [5]), medicine (e.g., [6]), and therapy
(e.g., [7]), have started following suit in adopting end-user robot programming.

To increase accessibility, prior work on end-user robot programming has
explored various programming interfaces and methods to reduce the high com-
plexity involved in robot programming. In particular, visual programming is a
common end-user robot programming method for simplifying logic specification
when programming robot applications. For instance, Lego Mindstorms, Scratch
[8], and CoBlox [9] utilize draggable block instructions to allow users to easily
author the full structure and flow of a robot program. Due to the simplicity
of its abstract nature, block-based visual programming has helped make robot
programming accessible for a wide variety of people. However, this form of
programming is constrained to work with tasks involving simple perceptual and
action capabilities. As a result, block-based programming environments often
lack scalability to more complex manipulation tasks.

To address this limitation, many robot programming interfaces, especially
those used in manufacturing (e.g., Universal Robots’ PolyScope and Elephant
Robotics’ ElephantOS), combine visual programming together with kinesthetic
teaching (e.g., [10]), enabling users to specify more complex robot programs
by physically guiding the robot to demonstrate a specific task. This hybrid
approach allows for more complex robot manipulation, opening up the use of
robot programming for more diverse functional tasks in real-world applications.
Nonetheless, programming interfaces that incorporate kinesthetic teaching can
still be challenging to use for end-users unfamiliar with robot kinematics, leading
to unproductive demonstrations that require further editing and refinement.
How can we design user-centric demonstration aids to help end-users produce
effective and efficient demonstrations?

To answer this question, we first conducted a formative study to explore the
barriers faced by users when programming a robot using a commercial end-user
robot programming interface widely used today that combines visual program-
ming and kinesthetic teaching. The study revealed that users experienced sev-
eral difficulties in authoring and editing robot demonstrations and in receiving
appropriate system feedback upon encountering challenges. We translated the
user needs and challenges we observed into a set of design requirements that
guided our development of Demoshop, an interactive robot programming tool
that assists end-users in authoring and editing task demonstrations (Fig. 1).

Demoshop enables fine-grained, direct manipulation of a demonstrated tra-
jectory via continuous path discretization and common tools for authoring and
editing such as selection, insertion, and inspection. Demoshop provides men-
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tal scaffolds throughout the programming process to help users understand the
state of their program, the programming system, and the robot. In addition,
Demoshop prototypes just-in-time assistance similar to the code completion
and smart suggestion features that are commonly found in modern computer
programming systems.

To assess the effectiveness of Demoshop in improving current kinesthetic
teaching-based workflows, we conducted a user study in which participants were
asked to author and edit demonstrations using either Demoshop or the program-
ming interface used in our formative study. Our findings demonstrate the po-
tential of introducing authoring and editing aids commonly found in computer
programming into the end-user robot programming workflow.

The contributions of this paper include:

� Design opportunities for end-user robot programming systems that were
identified through a formative study in which users used a programming
system popularly used to program collaborative robots in manufacturing
domains;

� Demoshop1, an open-source interactive robot programming system that
implements various user-centric programming aids, informed by the identi-
fied design opportunities, to reduce suboptimalities in task demonstrations
provided by users;

� An empirical understanding of how Demoshop may improve the robot
programming workflow and enhance user experience and task performance
for users with or without technical training in robotics and programming.

2. Background and Related Work

2.1. Robot Programming

A key advantage of robotic systems lies in their versatility due to easy adap-
tation to different tasks without significant redesign to their hardware or control
[11]. However, this advantage can only be fully utilized if the robot is easy for an
end-user to program. Today, Robot Operating System (ROS), which consists of
a variety of open-source software tools, libraries, and robot programming con-
ventions, is the fundamental collaborative framework for robot programming
[12]. While ROS provides flexible robot programming capabilities for a wide
variety of robotic platforms and algorithmic implementations, the prerequisite
knowledge, such as programming languages, kinematics, and computer vision,
required to effectively program even simple tasks using ROS and its largely com-
mand line-based interaction style makes robot programming using this frame-
work inaccessible to a layperson. This technical barrier partially limits the wide

1A system demo video is available at https://youtu.be/qvTMBZkvxwM. The Demoshop
project source code is available at https://github.com/intuitivecomputing/demoshop.

4



adoption of robotic technology outside of research labs and industrial work-
places. Consequently, the question of how to enable effective end-user robot
programming has been widely explored.

2.2. End-User Robot Programming

End-user robot programming aims to empower users to program a robot at
the level of intricacy and learnability corresponding to their knowledge level.
Prior research has explored several programming modalities to increase the ac-
cessibility of robot programming for non-programmers [13], including visual
programming (e.g., [14, 15, 10, 16, 17, 18, 19, 20, 21, 22, 23]), natural language-
based programming (e.g., [24, 25, 26, 27]), programming in augmented (e.g.,
[28, 29, 30, 31]) or mixed (e.g., [32, 33, 34]) reality, and tangible programming
(e.g., [35, 36]).

Among the various end-user robot programming methods, a direct method
for specifying robot skills without manually specifying a program is to demon-
strate the task skill under consideration. Demonstrations may be provided
through kinesthetic teaching, where users directly maneuver the robot to demon-
strate an intended action (e.g., [37, 38, 39]), video (e.g., [40, 41, 42]), or remote
operation of a robot (e.g., [43, 44]). Demonstrations of robot motion paths may
be specified as continuous trajectories or as a series of waypoints that the robot
should traverse.

To increase the applicability of robot demonstrations, research on Program-
ming by Demonstration (PbD) has investigated methods to generalize demon-
strations to various situations (e.g., [45, 46]), enable robots to learn from multi-
ple demonstrations of the same task (e.g., [47]), and teach robots to learn what
not to do [48]. However, by and large, PbD is only as effective as the user-
specified demonstrations themselves. Therefore, this work explores authoring
and editing tools that seek to help end-users produce effective and efficient kines-
thetic demonstrations that can later be used in subsequent learning algorithms
or end-user robot programming tools.

2.3. Robot Demonstration Enhancement

To enhance the quality of robot skills based on end-user demonstrations, pre-
vious research has investigated computational methods to enable effective robot
learning even when demonstrations are sub-optimal (e.g., [49, 50, 51]) and has
explored active learning paradigms through which robots can inquire on how to
improve their programs (e.g., [52, 53, 54, 55, 56]). Another avenue for handling
sub-optimal demonstrations is to enable users themselves to annotate, edit, and
refine their demonstrations. For example, prior work has explored how user
annotation of task constraints (e.g., [57]) and waypoint reference frames (e.g.,
[10, 38]) can effectively improve demonstration quality and generalizability. To
allow end-users to enhance program quality effectively, prior work has enabled
editing of kinesthetic demonstrations through Graphical User Interfaces (GUIs)
(e.g., [58, 59, 60]) or mixed reality (e.g., [32]).
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Previous research on direct end-user editing and refinement has mostly fo-
cused on the modification of individual waypoints in robot motion path demon-
strations and program adaptation to different task objects. This work extends
prior research by supporting direct editing of waypoints while allowing users to
use a straightforward method of demonstration through continuous path record-
ing. This hybrid use of continuous demonstration and discretized waypoint mod-
ification leverages their respective strengths, as we describe in the next section.
Furthermore, this work adds to previous work on end-user robot programming
by integrating proactive assistance commonly found in computer programming
interfaces, such as smart suggestions and syntax checking, together with fea-
tures unique to robot programming, such as contextual visualization, into the
robot programming workflow to assist end-users in minimizing and removing
demonstration suboptimalities.

3. Difficulties in End-User Robot Programming

To understand user needs in end-user robot programming, we conducted
a formative study to identify the diversity of experiences and challenges users
encounter when working with one of the most widely used end-user robot pro-
gramming interfaces today [61].

3.1. Formative Study

We instructed eight participants (2 males, 6 females), with ages ranging from
19 to 57 (M = 31.13, SD = 16.22), to program a UR5 6-DOF robotic arm to
complete four tasks in an hour-long formative study. Participants came from
various backgrounds and disciplines. Four participants had advanced degrees.
Half of the recruited participants had significant programming experience (3.5
or greater on a 5-point Likert scale, with 1 being having no experience and
5 being having a lot of experience), and the other half had no programming
experience. Though participants reported having a lot of experience with tech-
nology (M = 4.38, SD = 0.74), they had less experience with robots specifically
(M = 1.91, SD = 1.16) and with programming them (M = 1.75, SD = 0.89),
reported on 5-point Likert scales with 1 being having no experience and 5 being
having a lot of experience.

Participants authored programs for four tasks, each of which highlighted
different aspects of the physical manipulation of the robot. All tasks were com-
pleted in the same tabletop setting, with locations of task objects marked and
preserved across study instances. Participants were required to use kinesthetic
teaching to program the robot and were free to use either continuous trajecto-
ries, waypoints, or a combination of the two during the programming process.
After the experimenter received the participant’s informed consent, they pro-
vided the participant with a verbal tutorial and demonstration on how to use
the PolyScope interface on the teach pendant device that comes with the robot
(Fig. 2). The participant was free to ask any questions during the tutorial and
during the subsequent practice task in which they were asked to program the
UR5 to pick and place a block between pre-specified locations.
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After completing the practice task, the participants completed four program-
ming tasks using the programming interface (see Fig. 1 for examples). During
this time, the experimenter remained in the room to monitor participant safety.
The first task involved building a tower out of three blocks. This task empha-
sized both the trajectory and precision of the robot’s movement. The second
task was to program the robot to pick a towel hanging off a rack and to place
it on a “clothesline” rope. This task also highlighted trajectory and orientation
but did not require high precision. The third task required the participant to
program the robot to pour a cup of paperclips into a bowl. This task involved
precise control of trajectory, orientation, and speed. Finally, the fourth task
involved programming the robot to pick up a cup and place it on a rack, which
required the user to maneuver the robot’s end effector through several rotations
while avoiding collisions with the rack.

After the participant finished programming the robot, the experimenter set
the task objects back at their original positions and executed the robot program
for the participant. For each task, the participant was free to correct or edit the
program as many times as they wanted until they were satisfied, or they could
move on to the next task. The participant was stopped 45 minutes into the
study regardless of their task progress to complete an open-ended interview and
demographics questionnaire. The study was video-recorded, and participants
received $10 USD for completion of the study.

3.2. Findings

We identified common themes and concepts that emerged from the study
participants’ experiences. These findings informed the features we chose to
include in our demonstration tool. We summarize our key findings below.

3.2.1. Difficulties with Authoring Robot Motions

We found that there was a tradeoff between authoring robot motion demon-
strations using waypoints and authoring using continuous trajectory recordings,
which was in line with the findings from prior work [62]. Most participants
authored their demonstrations using continuous trajectory recordings because
they found that this approach gave them more control over the robot’s motion
and required less cognitive effort compared to specifying individual waypoints.
However, participants often experienced fatigue or had trouble manipulating the
6-DOF arm, together with difficulties in navigating the largely monochrome, dis-
jointed programming interface (Fig. 2), which resulted in jerky motion or unnec-
essary pauses in demonstrations recorded using continuous trajectory recording.
For example, a participant noted, “Physically delivering [the robot] was harder
than I thought it would be. . . wrestling it into that final position was harder
than I thought it would be” (P2). Another participant concluded that “[con-
tinuous trajectory recording], although easy, seems very inadequate for like an
application” (P4).

On the other hand, participants who authored their demonstration using
waypoints developed programs with smoother, more efficient movements be-
cause their programs did not include any of the jerkiness that accompanied
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Figure 2: Our formative study revealed that users face various difficulties in navigating the
highly partitioned end-user robot programming interface PolyScope without environmental
and task context.

physically dragging the robot manipulator. Furthermore, participants program-
ming using waypoints were able to more efficiently modify their programs by
changing individual waypoints instead of overwriting entire continuous trajec-
tories. However, several participants had difficulty forming appropriate mental
models for commands involving waypoints, leading to collisions or incorrect task
outcomes, since the motions between waypoints are determined by the robot’s
motion planner and not by the user. This revealed a tradeoff between the
user-friendliness of continuous trajectory recording, especially for users with-
out technical backgrounds, and the efficiency of manual waypoint specification,
which allows for more optimal demonstrations at the expense of user control.

3.2.2. Difficulties with Demonstration Editing

Participants mentioned how difficult it was to edit their demonstration with-
out having a detailed visualization of their demonstration. One participant sug-
gested path visualization as a desired system feature: “If you already have the
table set up like this, say if it’s a job situation . . . you can visualize the path
[the robot is] taking in a picture or something” (P1). Participants also found
that the processes of checking their work before running their demonstration
and moving the robot to a particular point in the program where editing may
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be required were unintuitive. As a result, we found that more participants cor-
rected their program by completely starting over with the programming process
rather than modifying the suboptimal or erroneous commands in the program.
One participant noted, “I don’t really think I corrected, if you remember I just
said ‘oh I have to delete it’ and just start again. Uhm, probably just a tiny bit
more knowledge would have me go ‘oh I can just go back a step to fix it”’ (P5),
which suggests that the process of editing without restarting the demonstration
may not be beginner-friendly.

3.2.3. Difficulties with System Response

The demonstration authoring and editing process was made more difficult
for users by lack of system feedback when their demonstration was not working
correctly and lack of system assistance during programming and editing. Par-
ticipants mentioned that it would have been helpful if the system could give
them more guidance on what actions and commands would be useful for the
demonstration that they were programming or if it could warn them when they
were about to use a programming command incorrectly (e.g., when they for-
got to instantiate a path command with a recording or inadvertently nested
commands). A participant suggested that “color would be nice, or you know
if there was a way to say ‘well these are the steps you’re gonna be doing’ . .
. maybe if they were color-coded, or something, cause this is very monotonous
and monochrome” (P2).

Overall, our formative study highlighted the key barriers, such as incorrect
mental models of demonstrations and sub-optimal movements introduced into
continuous trajectory recording, that prevent users who may not necessarily
have technical backgrounds or experience with a particular programming inter-
face from developing effective demonstrations.

3.3. Design Features for End-User Robot Programming Systems

Based on our observations and participant feedback, we identified several
design features for end-user robot programming systems to reduce some of the
pain points involved in the end-user robot programming workflow commonly
used to program collaborative robots today. Below, we list the primary design
objectives we derived based on observations from our formative study:

3.3.1. Continuous Path Discretization

Users should be able to easily demonstrate continuous motion trajectories
while still taking advantage of the smooth robot motions and ease of editing
associated with waypoints. Robot programming systems should therefore rep-
resent a user’s continuous demonstration while still allowing them to access and
edit their demonstration at a waypoint-level resolution.

3.3.2. Mental Scaffolds

End-user robot programming systems should include scaffolds that support
the formation and maintenance of users’ mental models of their programs, the
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Figure 3: Demoshop provides users with a one-stop interface through which they can use
continuous path discretization to develop and modify programs, mental scaffolds to understand
the state of their program, and just-in-time assistance to facilitate their programming process.

robot, and the programming interface. End-user robot programming interfaces
should center around the 3-D visualization of the user’s demonstration contex-
tualized within the environment in which the demonstration was created, which
is essential in helping users develop and maintain accurate mental models of
the robot programs they create [58]. We found this design goal to be especially
critical for waypoint-based demonstrations because the participants in our for-
mative study found waypoints to be confusing without visualization of their
spatial locations and surrounding environmental context. Furthermore, end-
user robot programming systems should help prevent interface usage errors and
offer undisruptive feedback while the user is creating, modifying, debugging, or
running a demonstration.

3.3.3. Just-In-Time Assistance

End-user robot programming systems should provide support throughout
the programming process, from authoring to execution, similar to the assistance
provided in most computer programming systems (e.g., integrated development
environments). For example, the system should automatically add relevant
annotations, such as gripper actions, to waypoints, thus reducing the extent of
post-demonstration editing required of the user, analogous to how a modern
computer program editor may automatically insert a closing curly brace.

4. Demoshop: An End-User Tool for Robot Programming by Demon-
stration

4.1. System Overview

In light of the design goals we uncovered from our observations of user ex-
periences in end-user robot programming, we implemented each of our design
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features in the form of various programming aids (i.e., continuous path dis-
cretization, mental scaffolds, and just-in-time assistance) in Demoshop (Fig. 3).
Our current implementation uses the Universal Robots UR5 robot manipulator,
a popular 6-DOF collaborative robot, as its programming platform. Demoshop’s
GUI is implemented using the Unity game engine, which includes a physics en-
gine and offers portability to augmented and mixed reality, which are emerging
mediums for end-user robot programming (e.g., [28, 32, 33, 63, 30, 31, 60]). We
use the MoveIt! framework for motion planning and object tracking, and we
integrated our software using Unity and ROS through ROS#. Next, we describe
how Demoshop implements easy authoring and editing capabilities through con-
tinuous path discretization, mental scaffolds, and just-in-time assistance.

4.2. Continuous Path Discretization

In addition to enabling authoring by manual waypoint specification, which
is the common approach to motion demonstration authoring implemented in
many end-user robot programming systems today, Demoshop allows users to
author continuous demonstrations, which the system automatically parses into
a set of waypoints in the robot’s joint space, rather than mandating that they
manually specify individual waypoints in a path themselves. When users begin
demonstrating a continuous path for the robot, Demoshop discretizes the path
into a set of waypoints separated by a fixed 10-centimeter interval, which we
chose empirically as it worked well for tabletop pick-and-place tasks.

Our discretization process naturally filters out the extraneous information
that we found to be common in users’ continuous trajectory demonstrations dur-
ing our formative study. A user’s continuous trajectory recording may contain
noise in the form of small jitters introduced in the course of maneuvering the
robot or pauses from when the user switched their attention from moving the
robot to navigating the programming interface. The discretization process ab-
stracts this noisy representation so that only the essential demonstration signal
is preserved as waypoints. This approach also provides a balance between exe-
cution flexibility (i.e., collision checking) and representation of a user’s program
structure [57].

4.3. Mental Scaffolds

Demoshop emphasizes contextual visualization, feedback, and visibility at
all times to support users in developing accurate mental models of the robot,
task environment, programming system, and program state.

4.3.1. Contextual Visualization

Demoshop’s interface centers on the 3-D visualization of the robot, the user-
specified demonstration, and the surrounding environment. Users are able to
choose their desired viewpoint within the 3-D view by using common finger
swipe gestures and visualize the real-time movement of the physical robot at all
times. They can also toggle the robot visualization on and off or drag windows
away to reduce the amount of visual clutter on the screen as needed, which
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can allow easier viewing of demonstration viewpoints. Sequential information
about demonstrations are conveyed by numeric temporal indices above way-
points together with “cold-hot” gradient coloring, with older waypoints being
bluer and newer waypoints being redder. If applicable, waypoint gripper ac-
tions can be viewed by hovering over or pressing on waypoints. Within the
visualization, users may preview waypoints by clicking on them to view their
associated robot configuration and may preview the entire demonstration com-
pletely in simulation without committing to running the program on the real
robot. The visualization shows the surrounding environment and tracks and
displays task objects in real time. In our current implementation, we display
the environmental context using hard-coded game objects specific to our study
environment and assume that the study environment remains static during pro-
gram execution. For the purposes of our study, we simplify object detection and
tracking by tagging all task objects with AR tags. We use a modified version
of the ROS package ar track alvar for AR tracking.

4.3.2. Feedback and Visibility

For users to have a safe and effective robot programming experience, it is
critical that they form and preserve an accurate understanding of what the
system is doing. We assist with this process by increasing the visibility of sev-
eral aspects of the system and providing system feedback when applicable. For
any robot movement displayed on Demoshop, the system indicates to the user
whether the motion shown on the screen is a simulated preview or whether it
reflects the motion of the physical robot in the real world. To further increase
awareness, any buttons that will result in the immediate movement of the phys-
ical robot are visually distinguished using warning indicators, which include
color as well as verbal symbols for color-blind populations. Similarly, the user
is always required to view a preview of the robot’s motion and to then con-
firm whether they want to run the demonstration on the physical robot before
executing a demonstration. The physical robot’s current status is displayed at
all times above the demonstration so that users have feedback on the physical
robot’s actions and on the reason for any errors (i.e., the robot is unable to
execute a movement or there is no feasible plan for the demonstration due to
collision).

4.4. Just-In-Time Assistance

Demoshop offers users various forms of just-in-time assistance to prevent
system misuse and to assist in making the PbD process easier on the user. We
highlight examples of how our system offers just-in-time assistance.

4.4.1. Demonstration Authoring Assistance

Since we designed our path discretization process to discretize at uniform
spatial intervals, waypoints essential to a user’s demonstration may not make
it into the final demonstration. One way users can ensure that a waypoint is
included in the demonstration is by using Demoshop’s manual waypoint spec-
ification feature. However, this approach still places the burden of program
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specification on the user. Therefore, our system tries to aid the user by auto-
matically adding key waypoints from the user’s kinesthetic demonstration into
the discretized representation. In particular, our system attempts to identify
key waypoints by inferring the user’s low-level motion intent. We implement this
low-level intent recognition with simple checks on whether the user has rested
the robot at a specific joint configuration for longer than a three-second period,
which tends to occur during critical transition points in the robot’s motion
path, or if they have opened or closed the robot gripper at any joint configu-
ration during the demonstration. In these cases, the system considers the joint
configuration a key waypoint and automatically adds it into the demonstration
for the user, while filtering out any automatically generated waypoints that are
too close to the key waypoint. If the key waypoint corresponds to a point in the
demonstration where the user opened or closed the robot’s gripper, the system
automatically annotates the waypoint with the respective gripper action during
the demonstration so that users do not have to manually specify the gripper
action using Demoshop’s waypoint editing tools after the demonstration. De-
moshop’s auto-annotation feature enables end-users to specify gripper actions
in the course of a kinesthetic demonstration, rather than specifying gripper ac-
tions separately post-demonstration, which is the convention for teach pendant
interfaces such as PolyScope.

The system also tries to predict a user’s low-level motion intent when they
manually add a waypoint. When users manually add waypoints using De-
moshop, they must specify the temporal index at which they want to add the
waypoint using an input text field. We implement low-level motion intent recog-
nition by having the system predict the temporal index at which to insert the
manually specified waypoint based on the index of the waypoint closest to it in
3-D space. As in the case of continuous path discretization, the system offers
automatic gripper action annotation for manually specified waypoints.

4.4.2. Error Prevention Assistance

Demoshop takes several measures to prevent execution or interface usage er-
rors. As prior work has suggested that novice programmers may find it difficult
to appropriately initialize programs [64] and that a common error in end-user
robot programming of manipulation tasks is failing to consider gripper initializa-
tion [65], Demoshop performs gripper initialization checks for users. Specifically,
if the user is about to run a demonstration that may require the gripper to be
open and the gripper is currently closed, the system warns the user and offers
assistance in opening the gripper. If the user had turned the robot visualization
off earlier in the programming process (e.g., to view the waypoints more easily
on the 2-D interface) but then attempts to preview the robot’s configuration
at a particular waypoint or preview the resulting motion from their program
without turning the visualization back on, the system automatically toggles the
robot visualization on for them. At all times, the system makes use of bub-
ble effects and shadows on buttons to afford clickability and disables buttons
completely when they should not be used.
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Together with the key functionalities of continuous path discretization, men-
tal scaffolds, and just-in-time assistance, Demoshop provides common features
such as selection tools, editing menus, and waypoint inspection capabilities to
enable easy program modification. Its one-stop interface uses color to organize
commands rather than relying on dividers or tabs, which can cause disruption
to the PbD process (Fig. 2), while also providing verbal alternatives for any in-
formation conveyed through color. Our current implementation is programmed
to work specifically with the UR5 manipulator, but its integration with ROS
enables it to be easily adapted to work with different robots or sensors.
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Figure 4: Our user evaluation consists of three pick-and-place tasks. The first task focused on
authoring, while the second and third tasks required the user to edit their existing program
to meet new task requirements.
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PolyScope Condition Demoshop Condition

Figure 5: We conducted a between-subjects study in which users were randomly assigned to
either a control condition in which they used Universal Robots’ PolyScope or the experimental
condition in which they used Demoshop.

5. Evaluation

Our user evaluation sought to assess users’ learnability, usability, and task
performance when using Demoshop. Our primary hypothesis was that De-
moshop would have a higher learnability and a higher usability and would better
aid users in achieving higher task performance when authoring and editing their
demonstrations compared to the baseline programming interface (PolyScope)
used in our formative study.

5.1. Experimental Tasks and Study Design

We contextualized our evaluation in common pick-and-place tasks that are a
core part of various manipulation tasks that collaborative robots are envisioned
to assist people with. In particular, we designed three experimental tasks; each
of them focused on different aspects of robot program authoring and editing
(Fig. 4). For the first experimental task, participants had to author a demon-
stration for the robot to pick up a block and to place it at a specified location.
For the second task, participants had to edit their demonstration from the first
task so that the robot placed the block on top of a base object at the same end
location as before. This task emphasized editing the end goal of the demon-
stration. The third task required the participant to edit their program from the
second task to avoid having the robot collide with a large box that was placed as
an obstacle. This task emphasized editing intermediate waypoints in the robot
demonstration.

We varied the interface used by participants for the experimental tasks,
and we designed a between-subjects study in which participants were randomly
assigned to one of the two conditions (Fig. 5):

� PolyScope. In this condition, participants used the PolyScope interface
developed by the manufacturer of the robot that was used in our forma-
tive study, which is part of the teach pendant that users used to move the
robot. Users were limited to adding, previewing, and executing waypoints;
path recording; and gripper actions for this study. We provided users with
a tutorial video demonstrating how to use these features and structure,
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preview, and move to specific parts in a program. This baseline condi-
tion represents a commonly used method for programming collaborative
robots.

� Demoshop. In this condition, participants used Demoshop to complete the
authoring and editing tasks. In this study, participants interacted with
Demoshop through a touchscreen computer. We provided users with a
video demonstrating relevant system features.

For both of our study conditions, users had to use the teach pendant that
came with the robot to move the robot while authoring a demonstration. Users
could move the robot by using the freedrive button on the teach pendant to
physically drag the robot or by using the movement commands available on the
teach pendant to move the robot in a desired direction.

5.2. Dependent Measures

We used a combination of objective and subjective measures to evaluate
users’ learnability, usability, and task performance when using Demoshop.

5.2.1. Objective Measures

We measured practice time to approximate learnability [66] and used task
progress and task time to assess aspects of task performance.

Practice Time (Seconds). We defined practice time as the length of time
participants spent on the practice pick-and-place task after viewing the tutorial
video and on trying out the various system features before indicating that they
felt ready to move on to the first experimental task.

Task Progress. We estimated task progress by the number of experimental
tasks for which the participant indicated to the experimenter that they were
ready to move on to the next task. We note that the participant’s indication
did not guarantee the success, nor the quality, of their demonstrated program.

Task Time (Seconds). Task time was measured as the interval from when
the experimenter handed off the task to the participant to when the participant
indicated that they were ready for the next task, excluding time spent running
the demonstration on the robot. This metric indicated task efficiency.

5.2.2. Subjective Measures

To understand participants’ perceptions of and experience with the program-
ming system, we relied on the System Usability Scale (SUS) [67, 68]; a custom
scale assessing the participant’s mental model of the system; and individual
questionnaire items.

System Usability Scale (0–100). The SUS is an established scale for assess-
ing usability comprised of ten questionnaire items probing various aspects of
usability, such as user confidence and perceived system integration. A score of
70 or higher is suggested to indicate acceptable, good usability [67].
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Mental Model of System (1–5). This scale consisted of six items (Cronbach’s
α=0.84) that examined the participant’s understanding of the robot’s capabili-
ties and the effect of their edits, as well as the participant’s perceptions of their
ability in identifying erroneous aspects of their programs.

In addition, we included individual items on 1-to-5 rating scales regarding
the participant’s perceptions of adopting the programming system for use in the
household and in industry.

5.3. Study Procedure

After obtaining informed consent from the participant, the experimenter
provided the participant with a tutorial video for the interface corresponding to
their experimental condition. For both conditions, the participant could pause,
rewind, or replay the tutorial videos before proceeding to the practice task. Dur-
ing the practice task, the participant was free to ask the experimenter questions
about the programming process and view the tutorial video as many times as
they desired. Once the participant indicated to the experimenter that they felt
comfortable with programming and operating the robot on their own using the
interface, they moved on to the experimental tasks. The participant was stopped
50 minutes into the study regardless of their progress. At this point, they were
asked to fill out a post-study questionnaire about their experience programming
the robot using the interface. After completion of the questionnaire, the exper-
imenter conducted a short open-ended interview to obtain further comments
about the user’s experience. The study was approximately one hour in length,
and participants were compensated with $10 USD.

5.4. Participants

We recruited 16 participants (10 males, 6 females) from the surrounding com-
munity. Participants’ ages ranged from 18 to 64 (M = 26.94, SD = 12.80). Par-
ticipants reported being moderately experienced with robots (M = 2.94, SD =
1.53), highly experienced with technology (M = 4.19, SD = 0.91), and expe-
rienced with programming (M = 3.63, SD = 1.09), but less experienced with
programming robots (M = 2.13, SD = 1.45) on 1-to-5 rating scales (5 being
lots of experience). Participants came from a diverse array of educational back-
grounds and industries, including fields outside of engineering such as academic
administration, education, psychology, and film.

6. Results

In our data analysis, we first performed normality tests on the obtained data
for our measures to test whether or not they were from a normal distribution. If
the data followed a normal distribution, we used a student’s t-test for analysis;
otherwise, we used a Mann-Whitney U test. Our data analysis used two-tailed
tests, and we considered p < .05 as a significant effect. We followed Cohen’s
guidelines on effect size and considered 0.1 ≤ r < 0.3 or d = 0.2 a small effect
size, 0.30 ≤ r < 0.50 or d = 0.5 a medium effect size, and r ≥ 0.50 or d = 0.8 a
large effect size [69]. Fig. 6 summarizes our main results.
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Figure 6: Box and whisker plots of data from our objective measures of learnability, task
progress, and task efficiency and data from our subjective measures of usability. The top and
bottom of each box represent the first and third quartiles, and the line inside each box is the
statistical median of the data. The length of the box is defined as the interquartile range
(IQR). The ends of the whiskers are the first quartile minus 1.5 IQR and the third quartile
plus 1.5 IQR. For subjective measures, a higher value close to 5 indicates higher perceived
usability.

6.1. Objective Measures

Our data showed no significant difference in practice time between par-
ticipants using the PolyScope (M = 871.71, SD = 504.25) and Demoshop
(M = 700.76, SD = 344.75) interfaces, t(14) = 0.79, p = .442, d = 0.40.
Although we did not find significant difference in task progress between the
two conditions, X2(2) = 2.33, p = .311, there were two participants using the
PolyScope interface who only completed the first experimental task (authoring)
within the allotted time. Since the first experimental task was the only one that
all participants completed, our analysis of task time only focused on the author-
ing task. A Mann-Whitney U test indicated that users spent significantly longer
on the first experimental task in the PolyScope condition (Mdn = 278.44) com-
pared to the Demoshop condition (Mdn = 182.77), U = 12.0, p = .036, r = 0.53.

6.2. Subjective Measures

Our data indicated that there was no significant difference in participants’
usability ratings for Demoshop (Mdn = 67.50) compared to PolyScope (Mdn =
61.25) as measured by SUS, U = 41.5, p = .328, r = 0.25. Participants reported
having a significantly stronger mental model of the system using Demoshop
(M = 4.17, SD = 0.27) compared to PolyScope (M = 3.30, SD = 1.02),
t(7.96) = 2.34, p = .048, d = 1.17. Moreover, participants thought that De-
moshop was more likely to be adopted in the household (M = 3.38, SD = 1.06)
than PolyScope (M = 2.13, SD = 1.13), t(13.95) = 2.29, p = .038, d = 1.14.
However, there was no significant difference in participants’ opinions on whether
the two interfaces (Polyscope: Mdn = 5; Demoshop: Mdn = 5) would be likely
to be adopted in industry, U = 40.5, p = .382, r = 0.29.

7. Discussion

In this paper, we presented Demoshop, which supports users in programming
robot motion demonstrations via kinesthetic teaching. Based on the user needs
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we observed from a formative study, we implemented continuous path discretiza-
tion to allow for flexible customization of demonstrations, mental scaffolds to
help users develop correct mental models of their programs, and just-in-time as-
sistance to enhance user experience of the programming process. Results of our
user evaluation indicate that users have greater task efficiency while authoring
robot programs and maintain stronger mental models of the system when using
Demoshop compared to PolyScope.

While our results suggest that Demoshop can help improve task efficiency,
task time varies notably among participants. In particular, we have observed
that task time may be affected by differing techniques for authoring the demon-
stration and differing expectations on what constitutes task success among the
participants. For example, some participants physically dragged the robot, while
others used the movement control on the teach pendant to author the robot’s
movement. Moreover, our results do not directly reflect task efficiency for edit-
ing and debugging. Nevertheless, we found that users were able to navigate
and understand how to use Demoshop quickly, making the PbD process more
streamlined. Below, we discuss additional findings, implications for end-user
robot programming, and the limitations and future directions of our work.

7.1. Improvements for Usability

Overall, post-study interviews revealed that most participants found De-
moshop to be straightforward, easy, and intuitive to use during demonstration
authoring and editing. One participant recounted, “I think [the programming
process] is pretty straightforward. I don’t have any background in Computer
Science, but using the system was easier than I thought when I got used to it”
(P10). Participants also found that Demoshop made the editing process to be
particularly intuitive, with one participant stating that “I just think the ability
to . . . edit waypoints individually was pretty good cause that like allowed me to
really quickly like sub in waypoints, keep existing . . . the idea that I didn’t have
to . . . reset the waypoints, like, all of them simultaneously . . . I was able to
pinpoint which waypoints I wanted to do and that was really nice” (P11). On
the other hand, our results suggested that users did not find Demoshop to be
significantly more usable than PolyScope. The average SUS score for Demoshop
was below 70, which is a suggested score for acceptable usability [67, 68]. Fur-
thermore, users had comparable learnability and task progress for both systems,
indicating that there are still areas that could be improved to make Demoshop
more user-friendly. Several participants pointed out that the instability of the
real-time tracking of task objects (boxes and blocks) made the contextual visu-
alization less useful, and even caused the system to seem deceptive, so we have
extended our system to include more robust object tracking to provide a more
reliable contextual visualization.

7.2. Advantages and Applications of Path Discretization

In this work, we adopted path discretization as a system feature to strike
a balance between the advantages of continuous trajectory demonstration and
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manual waypoint specification that we observed in our formative study. One
participant mentioned that they liked that continuous path discretization al-
lowed them to use continuous path recording for authoring while still providing
them with access to individual waypoints during editing: “If we are setting up
a path from scratch, then definitely [continuous path specification] is better, but
if I already have a path and just have to slightly change it, I think adding a
waypoint is more convenient” (P9).

Path discretization has additional advantages and use cases that can fur-
ther augment end-user robot programming. Discretizing a continuous motion
demonstration into a set of essential motion waypoints provides a concise ab-
straction of a user task, which may be ideal for robot learning algorithms due
to its succinctness [70]. In addition, a discretized representation of a continu-
ous demonstration allows the user to provide fine-grained annotation on various
portions of the provided demonstration. For example, a user may specify which
waypoints may be problematic for a demonstrated task, providing the robot
with the opportunity to substitute the erroneous waypoints. In this way, even a
partially flawed demonstration can be used by the robot in the learning process.

Discretization can also be harnessed to create generalized pattern-based rep-
resentations of demonstrations. A discretized representation of a task may be
used as a template for the robot, providing the general shape and phases that
comprise a particular action. These templates may be used to automatically
structure new robot programs to minimize the cognitive burden of initial pro-
gram demonstration via kinesthetic teaching. In this paper, we focused on mak-
ing the process of authoring and editing more seamless and intuitive but did not
explore how we can help users generalize their demonstration to new scenarios
(e.g., [46, 71]), nor did we consider specification of program logic for complex
tasks. We plan to explore how we can integrate generalizability with program-
ming aids, such as program templates, to help users develop more interactive,
adaptable programs.

7.3. Recognition of Demonstration Intent

Demoshop currently offers programming assistance that predicts the user’s
low-level motion intent by considering the spatial and temporal configuration
of waypoints. We are currently exploring when and how to offer assistance to
users in avoiding sub-optimalities (e.g., unnecessary sub-trajectories and joint
configurations) and errors (e.g., collisions) through the estimation of higher-level
demonstration intent.

Our initial exploration has identified a behavioral signature—a gap between
the amount of effort exerted by the user and the resulting change in the mo-
tion demonstration (Fig. 7). From our exploratory study, we found that this
signature emerges when the user is having trouble moving the robot and ex-
pends a sizable amount of energy in attempting to maneuver it to a specific
joint configuration (e.g., trying to align the robot gripper with the target object
precisely). Our future work will investigate how to recognize this behavioral sig-
nature and how the system may automatically intervene by moving the robot
to a user’s intended position, which may be particularly essential for end-users
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Figure 7: Our initial exploration of sensor data from users’ kinesthetic demonstrations has
revealed a common behavioral signature that indicates a gulf between user effort and robot
motion outcomes.

unfamiliar with the robot, end-users with physical impairments preventing cer-
tain movements, or end-users that need to perform more intricate maneuvers.
In addition to automatic solutions, we will add features for the end-user to man-
ually override or correct system assistance, as done by previous works that use
automatic system assistance in end-user robot programming (e.g., [72, 73, 74]).
We have currently implemented a method of authoring assistance in Demoshop
that autocompletes object grasping during pick-and-place tasks; effectively, this
assistance snaps the gripper to the target object of interest. We will continue to
incorporate intelligent aids that draw from human behavioral cues and intent to
provide personalized assistance that goes beyond the level of program syntax.

7.4. Error Prevention in End-User Robot Programming

While end-user programming makes programming accessible for people with
wide-ranging backgrounds, it introduces potential pitfalls in the form of ex-
tensive errors in software created by end-users [75], which can have especially
grave consequences for applications in robotics that may have interactions with
the physical world and people. Lack of programming background may make
end-users more susceptible to relying on workarounds when writing their code,
potentially worsened by incorrect evaluations of their own programming ability
[76]. Therefore, it is critical to enable end-user programmers to effectively dis-
cover sources of failure within their code while minimizing system interference in
their programming workflow [77]. Demoshop currently includes mental scaffolds
and just-in-time assistance that automatically help prevent system usage and
robot execution errors. To further prevent a diversity of errors transparently,
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we would like to build off previous works on verification of end-user robot pro-
grams [78] by incorporating verification modules into Demoshop that can help
end-users pinpoint errors in their code and suggest possible fixes to the user
(e.g., alternate motion paths).

7.5. Limitations and Future Work

We plan to conduct additional evaluations that better represent the scenarios
in which Demoshop may be used. Although we found no significant correlations
between participants’ programming experience and our study results, partici-
pants in our evaluation did have an above average prior experience with pro-
gramming, including participants from non-STEM fields, who had an average
programming experience of 3.6 on a 5-point Likert scale (SD = 1.14, 5 being lots
of experience). Since Demoshop is meant to be used for end-users from diverse
backgrounds, we will focus on participant recruitment from a wider variety of
sources. Furthermore, while users with and without technical background both
implied that Demoshop was straightforward and easy to use, participants found
that Demoshop seemed more likely to make its way into a household environ-
ment than PolyScope but not necessarily more likely to be found in industry.
This finding suggests that Demoshop may be more approachable for the average
user but may be limited in its applicability to more advanced applications such
as those found in manufacturing. In this work, our user evaluation focused on
tabletop pick-and-place tasks that involved simple robot trajectories and object
interactions. We would like to further develop Demoshop’s sensing capabilities
and evaluate Demoshop for tasks involving more dexterous and precise manip-
ulation in the future to understand how the findings from our current study
apply in more complex task scenarios.

Although participants perceived Demoshop as being accessible for home use,
we acknowledge that our current implementation requires extensions, such as
collection of real-time sensory feedback throughout the programming process
and support of more accessible non-industrial robot platforms that are easier to
maneuver, before it can be deployed in homes. We emphasize that Demoshop is
being continuously developed, and we have made all of the code for Demoshop’s
implementation openly available for developers together with instructions on
how to extend the system’s sensory module and modify it to work with differ-
ent manipulators. As we continue to develop Demoshop, we hope to include
more advanced computer vision capabilities so that Demoshop can support ma-
nipulation robust to the potential occlusion and clutter found in non-industrial
environments. We would also like to further empower end-users in not only
performing robot motion specification, but also specification of environmental
context (e.g., [10, 79]), so that end-users do not need to rely on expert developers
to tag their objects and set up their task environment within Demoshop.

In this work, we used PolyScope as the basis for our formative study and sys-
tem design and as the baseline for our user evaluation. We chose the PolyScope
interface as the focus of our observation as it exemplifies the end-user robot pro-
gramming workflows adopted in industrial environments today and may there-
fore serve as a tool in understanding user experiences with current commercial
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end-user robot programming systems. However, we would like to note that
PolyScope does not represent the current state-of-the-art in end-user robot pro-
gramming and does not include any sensing capabilities, which, as shown in
our formative study, limits its usability. In future extensions of Demoshop, we
would like to evaluate Demoshop against additional state-of-the-art baselines
from academia and industry (e.g., [16]) to obtain a better understanding of De-
moshop’s relative performance against more advanced programming systems.

Finally, we found that users believed that they had better mental models of
the system and their demonstration using Demoshop compared to PolyScope,
but in reality still needed comparable practice times and experienced similar
task progress between the two interfaces. This finding reveals a discrepancy
between how users think they are performing and how they are actually per-
forming when using Demoshop. Our current implementation prototyped just-
in-time assistance focused on low-level robot manipulation and error prevention
mechanisms specific to the Demoshop interface. By offering more intelligent
programming aids and adaptivity to users’ level of expertise and to dynamic
task environments, we aim to reduce the gap between user experiences and
performance outcomes.

8. Conclusion

End-user robot programming by demonstration parallels end-user computer
programming in its potential to propel the adoption of automation and program-
ming tools in a variety of workplaces without requiring extensive programming
training or expertise. However, developing kinesthetic demonstrations presents
its own unique set of challenges, requiring that users have an understanding
of robot kinematics and the situated context of motion paths and waypoints.
Therefore, it is critical to introduce authoring and editing aids into the kines-
thetic teaching workflow to minimize the cognitive burden required of users in
specifying optimal robot programs. In this paper, we describe a formative study
exploring user experiences in kinesthetic teaching and present a set of design
objectives based on our observations for end-user robot programming systems to
reduce user difficulties in end-user robot programming. Based on these design
guidelines, we implement programming aids in the form of continuous path dis-
cretization, mental scaffolds, and just-in-time assistance in the Demoshop inter-
face and demonstrated their effectiveness in improving authoring efficiency and
user understanding in end-user robot programming. We plan to continue our ex-
ploration of user-centered programming assistance by investigating data-driven
approaches towards understanding user programming intents, opportunities for
system-level assistance, and user needs. By applying intelligent assistance to
end-user robot programming, we aim to progress towards the democratization
of robotic assistance for everyday users.
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