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Abstract— Interaction conventions (e.g., using pinch gestures
to zoom in and out) are designed to structure how users
effectively work with an interactive technology. We contend
in this paper that successful human-robot interactions may be
achieved through an appropriate use of interaction conventions.
We present a simple, natural interaction convention—‘‘Put That
Here”—for instructing a robot partner to perform pick-and-
place tasks. This convention allows people to use common
gestures and verbal commands to select objects of interest and
to specify their intended location of placement. We implement
an autonomous robot system capable of parsing and operating
through this convention. Through a user study, we show that
participants were easily able to adopt and use the convention to
provide task specifications. Our results show that participants
using this convention were able to complete tasks faster and
experienced significantly lower cognitive load than when using
only verbal commands to give instructions. Furthermore, when
asked to give natural pick-and-place instructions to a human
collaborator, the participants intuitively used task specification
methods that paralleled our convention, incorporating both
gestures and verbal commands to provide precise task-relevant
information. We discuss the potential of interaction conventions
in enabling productive human-robot interactions.

[. INTRODUCTION

Robots hold promising potential in assisting people in
various domains, ranging from flexible manufacturing and
collaborative construction to healthy aging at home. To
maximize the utility of robotic assistance in the envisioned
domains, humans must be able to easily and effectively
interact with their robotic assistants and collaborators in these
diverse environments and situations. A common approach
taken by Human-Robot Interaction (HRI) researchers to
design effective human-robot interactions has been to model
the interactions off of human-human interactions, with the
robot playing the role of a human-like, social agent []1]].

While it is important for robots to have a semantic under-
standing of human language, behaviors, and environments in
order to interact with people seamlessly, modeling human-
robot interaction off of human-human interactions introduces
several technical challenges, such as understanding sponta-
neous human behavior, considering a diversity of modalities
in human expressions, and understanding interaction contexts
[2]]. These technical challenges can be computationally de-
manding and algorithmically intractable, especially in uncon-
trolled settings or long-term deployments.

As an alternate approach to requiring robots to acquire the
level of semantic understanding necessary for human-human
interactions, we argue that users themselves can learn and
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Put That Here: An interaction convention for instructing pick-and-place tasks

Fig. 1. Similar to how interaction conventions can be used to structure
human-computer interactions (Top), we contend that appropriate interaction
conventions can enable productive human-robot interactions. We present
a real-time, interactive system that implements an interaction convention
through which users use multimodal behaviors to instruct a robot manipu-
lator in performing pick-and-place tasks (Bottom).

use simple, intuitive interaction conventions to effectively
interact with robots. Interaction conventions have commonly
been leveraged within Human-Computer Interaction (HCI)
to drive and, as needed, constrain user behaviors in using
computing devices [3]]. Examples of interaction conventions
employed by users when they interact with modern comput-
ing devices include dragging and dropping virtual objects
within an interface, pinching two fingers to zoom out of
a screen, or long-pressing to activate a hidden interaction
mode. Such learned interaction conventions have been shown
to produce natural human-computer interactions [4]].

In this work, we explore the application of learned in-
teraction conventions to human-robot interactions to enable
productive, natural interactions (Fig. |I|) We study an inter-
action convention, “Put That Here,” that human users can
use to interact with robots during tabletop pick-and-place
tasks, which are fundamental to many manipulation tasks
that robots are envisioned to perform [5]. This convention
(“put that (pointing toward an object) here (pointing at a
target location)” [|6]]) builds on implicit multimodal human
communication and proved to be natural and robust for
directing a robot to perform a variety of pick-and-place tasks.

Next, we provide relevant background that motivates this
work. We then describe our interaction convention design
and system implementation; we report a user evaluation and
its results in Sections and [V} respectively; we conclude
this paper with a discussion of design implications.
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Our interaction convention for multimodal instruction of pick-and-place tasks. It supports the use of indicative gestures with one or two hands

for object selection and for location specification, as well as the use of verbal commands to describe task actions and object features.

II. BACKGROUND
A. Interaction Conventions

Interaction conventions have been widely used by de-
signers in Human-Computer Interaction to convey to users
the range of interactions that are feasible for a particular
computing system [3]]. In this way, interaction conventions
are not limited to originating in natural human behavior,
but may instead be constructed to minimize technological
failures resulting from the limitations of interactive tech-
nologies. For example, navigating a screen-based interface
using a scrollbar is a convention that was designed so that
users are able to access the full extent of content available
on the interface while still working within the technological
limitations of their computing device (i.e., the limited screen
size). In this work, we similarly use an interaction convention
to constrain user behaviors such that they may interlock with
a limited set of robot capabilities.

Prior works have suggested that the ease of use and
learnability of an interface relying on interaction conventions
can depend on the user’s prior experience with the convention
, . As a result, although interaction conventions do not
have to be tied to human behavior, basing interaction conven-
tions off of existing human behaviors that users are already
familiar with can facilitate users in quickly and effectively
using the convention. Several works in HCI have modeled
interaction conventions off of implicit human behaviors []EI],
or natural multimodal inputs from humans [TT]]-[15]].
Our interaction convention, “Put That Here,” similarly takes
root in implicit multimodal human behaviors.

B. Multimodal Human-Robot Interaction

People instinctively employ verbal and non-verbal be-
haviors in communication and instruction. Among various
non-verbal behaviors, gestures play a particularly integral
role in human communication [16]], [17]]. Gestures are used
to disambiguate references and supplement spoken content.
Moreover, they help facilitate expressions that are hard to
convey simply through speech (e.g., precise location in
space) and thus reduce the communicator’s cognitive load
(18], [19] and enhance the level of communication between
communicators and recipients. Therefore, for robots to un-
derstand human pick-and-place task instructions in situ, they

need to have situational awareness of human multimodal
behaviors, and they must utilize these behaviors effectively
for reference resolution (e.g., knowing what objects are being
referred to and where the precise target location is) [20]-[23].
Multimodal behaviors for robot instruction, particularly
gestures and speech, have demonstrated their potential in
enabling effective interactions between humans and robots
[24]-[26]. Previous approaches to multimodal interactions
with robots have included verbal instruction for mobile
robot navigation [27]], deictic gestures for directing a robot
collaborator’s attention [28]], and pointing gestures for pick-
and-place tasks . In this work, we describe an interaction
convention composed of task instructions consisting of verbal
and gestural commands for tabletop pick-and-place tasks.

III. SITUATED MULTIMODAL INTERACTION
CONVENTION

In this section, we first present a simple interaction con-
vention for intuitive instruction of robot pick-and-place tasks.
We then describe an interactive system implemented to allow
end users to follow this convention in collaborating with a
robot manipulator through multimodal instructions.

A. “Put That Here”: An Interaction Convention for Multi-
modal Instruction

People naturally—and almost necessarily—employ a com-
bination of verbal commands and gestures to provide unam-
biguous instruction of pick-and-place tasks to a collaborative
partner. Drawing on our experience and observations of
human interactions, as well as prior research on human
multimodal interactions with technology (e.g., [6]])) and robot
instruction (e.g., [20]), we designed a straightforward interac-
tion convention, “Put That Here,” for specifying robot pick-
and-place tasks. Our convention involves the use of hand
gestures to select objects and to specify intended move-
to locations, while allowing users to naturally utter task
actions (e.g., “move” and “pick up”) and to verbally point
out relevant features of objects and the environment (e.g.,
“blue blocks™). Figure 2] illustrates a set of common gestural
specifications and verbal commands that were implemented
in our system.

We implemented four types of indicative gestures—single-
finger pointing, two-finger pointing, showing, and covering



Algorithm 1 Multimodal Put-That-Here Convention

Gesture-Type < Gesture-Recognition()
Fingertip-location «+ Fingertip-Detection()
Speech-Command <+ Speech-Recognition()
Pointed-Objects < Object-Detection(Gesture-Type)
if Speech-Command = pick then
Pick-Object < Pointed-Objects
Feedback(Pick-Object, Gesture-Type, pick)
else if Speech-Command = place then
Place-Location < Fingertip-location
Feedback(Place-Object, Gesture-Type, place)
Manipulation(Pick-Object, Place-Location)
else if Speech-Command = cancel or stop then
Reset(Speech-Command)
else
Feedback(Pointed-Object, Gesture-Type, point)
end if

(or “brushing”)—that have been observed in the manner by
which people talk and interact with objects [20]], [28]]. In our
own analysis of people’s natural instruction of pick-and-place
tasks (see Section [V-A)), we also observed the various uses of
pointing and covering gestures by the participants (Figure []
(b)). In fact, several participants’ natural instructions (prior to
learning the “Put That Here” convention) were following our
designed convention and could already be recognized by our
system. In addition to simple task indication with gestures
and speech, people can use the aforementioned behaviors to
refine and clearly identify objects for selection. For instance,
users can use a covering gesture to select a group of objects
and then use verbal commands, such as “pick blue objects,”
to specify only blue objects within the covering selection.
Next, we describe our autonomous, interactive system that
enables users to instruct a robot manipulator to perform pick-
and-place tasks via the “Put That Here” convention.

B. System Overview

Our interactive pick-and-place system consisted of a URS
robot manipulator, a mini-projector, a ceiling-mounted RGB
camera facing downward, and several software modules for
gesture recognition, speech recognition, object detection,
robot manipulation, and system feedback. Algorithm (1| de-
tails how these modules are integrated to enable multimodal
specifications of pick-and-place tasks.

C. Gesture Recognition

We implemented two methods for recognizing indicative
gestures: (1) contour-based fingertip detection and (2) deep
learning-based gesture recognition. For both methods, we
used purple gloves and a green screen to simplify hand
segmentation and recognition. The segmented ROI image
was then processed by the following methods in parallel:

1) Fingertip Detection: Our implementation of fingertip
detection followed an image processing pipeline similar to
that proposed by Gurav and Kadbe [30]]. Our pipeline began
with image blurring using an average filter. The filtered
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Fig. 3. The design of our neural network for gesture classification.

image was then converted into HSV space for hand seg-
mentation and contour extraction. We further smoothed the
contour of the hand [31]] to filter out noisy convex points. We
then empirically determined additional thresholds to qualify
the remaining convex points as fingertips.

2) Learning-Based Gesture Recognition: In addition to
geometry-based fingertip detection, we also applied deep
learning for gesture classification. Our designed neural net-
work is depicted in Fig. [3] The input to this network is a
binary image of a segmented hand. The output is one of
four classifications: one-finger pointing, two-finger pointing,
showing gesture, and covering gesture. We used cross en-
tropy for loss computation and Adam [32] for optimization.
Our training data was collected locally. To improve general-
ization of our model, we augmented our training images via
image rotations, affine transformations, and flips [33]. We
also added L2 regularization to avoid model overfitting [34].

D. Object Detection and Reference Estimation

We used color segmentation to identify objects and our
contour-based approach to locate the center of a hand and
its fingertips. This information allowed us to estimate the
pointing direction and the objects being referenced. To recog-
nize the direction of a “showing” gesture, we used principle
component analysis (PCA) to compute the primary direction
of the gesture. For the “covering” gesture, we considered
objects within the area around the hand shape.

E. Speech Recognition

We used the Google Speech-to-Text service to recognize
users’ verbal commands. We passed audio streams from
a microphone placed in front of the user to the Google
Cloud service, which in turn returned the recognized texts.
Locally, we used a language model representing the linguistic
structure of a task instruction. A valid instruction consisted of
two parts: object selection (“pick’”) and location specification
(“place”) (see examples in Fig.[2). The recognized texts from
the Google Cloud service were parsed using our language
model. Parsed verbal commands and recognized gestures and
objects were associated temporally. The fused information
was then used to identify the selected objects and intended
location. Our method of associating verbal commands and
gestures was informed by models of human communication,
which indicate that a gesture-relevant linguistic cue occurs
within the timespan of the corresponding gesture [35].



F. Robot Manipulation

We used simple wooden blocks in our pick-and-place
task and preprogrammed the robot’s grasp configuration for
the blocks. The positions of blocks in image coordinates
were transformed to real-world coordinates relative to the
base link of the robot via homography transformations. The
desirable grasp pose of the block was then used to solve
inverse kinematics to plan the robot’s motion. The system
chose the inverse kinematics solution that was closest to the
robot’s current joint configuration while avoiding introducing
awkward movements into the motion plan.

G. Signaling System Feedback

In addition to instruction recognition and robot manipu-
lation, we implemented a projection-based feedback system
that signals system states through projected highlights (Fig.
[2). Projected feedback indicated the system’s interpretation
of user task specifications. In our implementation, projected
feedback highlighted the object(s) that a user was pointing
at with a circle, the object(s) that was/were selected with a
square, and the location specified by the user with a cross.
When an instruction included multiple objects, the cross
represented the center of the object cluster, and triangles
represented the place location of each object. These signals
provided real-time feedback to users about their instruc-
tions. Prior research has shown that effective feedback from
robotic systems can significantly improve collaborative task
performance and user experience [36], [37]. In our study,
users were able to use verbal commands to “cancel” their
instructions or “stop” the robot action based on projected
system feedback.

IV. EVALUATION

We sought to assess whether people are able to learn
and use the interaction convention of “Put That Here” to
effectively instruct a robot to perform a variety of pick-
and-place tasks. More broadly, this evaluation aimed to
understand the possibility of structuring interactions between
humans and robots via interaction conventions.

A. Study Design and Experimental Conditions

Our user study consisted of two parts. In the first, par-
ticipants were asked to provide pick-and-place instructions
as naturally as they would when interacting with a human
partner. The robot was not revealed to the participants during
this part of study. To avoid linguistic or gestural priming that
could potentially influence participants’ behaviors, we pro-
jected task information directly onto the workspace (Fig. H]
(a)) and told participants that their partner could not perceive
the projected information. We recorded participants’ task
instruction performances. For the second part of the study,
we designed a within-subjects experiment in which each
participant was asked to provide task instructions to a URS
robot using three methods. The order of the methods used
was counterbalanced using a Latin square method to reduce
potential order effects. The three methods of instruction are
described below:

1) Gesture-Only Instruction: In this condition, partici-
pants were instructed to use only gestures to provide task
instructions. There were no experimental instructions or con-
straints on how to perform these gestures. When the partic-
ipants completed their gestural commands, an experimenter
manually provided information on objects and target location
to the robot via a Wizard-of-Oz (WoZ) interface for robot
action execution. Conceptually, this condition represented
gesture-based interactions that are commonly used with
modern touch interfaces.

2) Speech-Only Instruction: In this condition, participants
were asked to instruct the robot with only verbal commands.
Similar to the gesture-only condition, an experimenter pro-
vided necessary task information based on the user’s verbal
specification to the robot via a WoZ interface. Conceptually,
this condition represented speech-based interactions that are
commonly used with smart speakers (e.g., Amazon Echo).

3) Multimodal Interaction Convention: Participants fol-
lowed the “Put That Here” interaction convention (Section
to instruct the robot using both gestures and verbal com-
mands. The system was fully autonomous in this condition.

B. Experimental Task & Procedure

Upon consenting to participate in the study, participants
started with the first part of the study, in which they provided
task instructions as naturally as they could. After this part of
the data collection, the participants were randomly assigned
to one of the condition orders to interact with the robot. In
the multimodal interaction convention condition, participants
were allowed to practice the instruction method as long as
they wanted until they felt confident about using it.

In each condition, participants were asked to give five task
instructions with different object configurations (e.g., loca-
tions and number of objects) to the robot, one at a time. The
participants were asked to look away from the workspace
while each task configuration was being set up. Once the
participants were instructed to return to the workspace, a
task instruction was projected for three seconds (Fig. E] (a)).
The participants were allowed to provide a task instruction
to the robot only after the projected information disappeared.

After each experimental condition, the participants filled
out a questionnaire regarding their experience using the
instruction method. After completing all three conditions,
an experimenter interviewed the participants for additional
comments. The whole study was about an hour long and the
participants were compensated with $10 USD.

C. Measures

To measure the effectiveness of our interaction convention
for pick-and-place instructions, we used a combination of
objective, subjective, and behavioral measures.

1) Training Time: We defined the training time for the
method of multimodal instruction as the length of the practice
trial. We note that participants could practice as long as they
wanted and were asked to end the practice trial only when
they felt comfortable using the method for task instruction.
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2) System Performance: To evaluate system performance,
we focused on whether our system was able to recognize par-
ticipants’ gestures accurately and whether participants were
able to use our convention to instruct the robot successfully.

3) Task Efficiency and Cognitive Load: We measured task
efficiency using the time needed for a user to complete a task
instruction. In our experiment, the time needed for the robot
to execute a given instruction was the same across conditions;
thus, we used the amount of time taken for instruction to
represent task efficiency.

Task efficiency is largely related to cognitive load ex-
perienced during a task; we sought to assess a partici-
pant’s cognitive load using a variety of measures. These
measures included: (1) preparation time—the time needed
before issuing an instruction (presumably for thinking and
planning the instruction); (2) number of linguistic pauses
within an instruction; (3) length of linguistic pauses; and (4)
number of speech disfluencies (e.g., uh, uhm, and like) within
an instruction. In addition to these behavioral measures of
cognitive load, we adapted the NASA TLX for our study
context. In particular, we used three items—mental demand,
effort, and frustration—from the TLX scale to assess task
load (Cronbach’s o = .74).

4) Usability: We used a questionnaire to assess partic-
ipants’ subjective perceptions of the instruction methods,
focusing on the aspects of ease of use and flexibility of the
method for specifying pick-and-place instructions. The scale
of ease of use consisted of four items (Cronbach’s oo = .84).
We used a single item to measure flexibility.

D. Farticipants

We recruited 14 participants for this study. Four partici-
pants were excluded from our analysis: one participant did
not finish the study, and three participants did not follow our
experimental protocol. The resulting 10 participants (two of
which were female) were included in our data analysis. The
participants were all native English speakers and aged 18.8
years on average (SD = 1.03).

V. RESULTS

We used one-way repeated-measures analysis of vari-
ance (ANOVA) in which instruction method—speech-only,
gesture-only, or multimodal—was set as a fixed effect,
and participant was set as a random effect. Our analyses

focused on how the “Put That Here” multimodal conven-
tion compared to speech-only and gesture-only task instruc-
tion. Therefore, two a priori pairwise comparisons, using a
Bonferroni-adjusted « level of .025 (.05/2) for significance,
were carried out to measure differences across conditions for
each quantitative measure. For readability, main effects and
all pairwise comparisons are reported in Fig. [

A. Natural Instructions for Pick-and-Place

We first present our observations of participants’ natural
behaviors when giving pick-and-place instructions (the first
part of our study). Nine out of the ten participants used
both gestures and verbal commands during their instruction.
To our surprise, one participant gave instructions through
only verbal commands. We note that several participants’
natural instruction, including their uses of gestures and verbal
commands, was very similar to our designed convention
(e.g., “Move this to here” and “Move these objects to here”
(P9)) (Fig. @] (b)). Moreover, we observed a wide range of
gestures that participants used. See examples in Fig. [ (c).
These variations posed technical challenges in recognizing
the intended indications successfully.

B. Training Time

On average, the participants spent less than 90 seconds
(M = 83.37, SD = 41.26) on practicing our interaction
convention before they felt confident in using it for task
instruction, suggesting the learnability of the convention.

C. System Performance

Overall, our system was able to recognize participants’
multimodal task instructions effectively. Out of 50 trials
(five trials per participant), our system failed to recognize
a participant’s fingertips twice and a pointed-at block once.
Only one instruction mistake was made by a participant, who
used a covering gesture but missed one target object.

D. Task Efficiency and Cognitive Load

Task efficiency was measured in terms of time needed to
complete an instruction. The analysis of variance found a
significant main effect of the instruction method on task ef-
ficiency, F'(2,137) = 23.92, p < .001. Pairwise comparisons
further revealed that the participants needed a significantly
longer time to finish an instruction if they could only use
verbal commands, F'(1,137) = 14.82, p < .001, or gestural
instructions, F'(1,137.1) = 9.43, p = .003.
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carried out to evaluate the effectiveness of using the multimodal method for pick-and-place instruction.

To assess participants’ cognitive load, we used several
behavioral and subjective measures, including preparation
time for instruction, linguistic dysfluency, and an adapted
TLX scale. The analysis of variance found a significant
main effect of the instruction method on preparation time,
F(2,138) 30.85, p < .001. On average, the partici-
pants were able to begin their instruction within less than
a second after the projected task disappeared when using
the gesture-only and multimodal methods; no significant
difference was found between gesture-only and multimodal
methods, F'(1,138) = 0.03, p = .871. In contrast, the partic-
ipants spent more than 2.5 seconds when using the speech-
only method, F(1,138) = 47.36, p < .001. Participants’
comments indicated that it was difficult to only use verbal
commands to give instructions and that they needed a bit
more time to think to compensate for the difficulty:

“I had to think a little before giving certain com-
mands.” (P11)

“[The speech-only method] was a little more diffi-
cult because it was harder to specify where exactly
within the rectangle [workspace] I wanted to move
the box and also which box I wanted to move.” (P7)

Our data also showed that the participants were likely
to pause during their instructions when using the speech-
only method (Fig. [6). Moreover, their instructions contained
dysfluent tokens such as “uh” in this condition (M = 0.66,
SD = 1.19). Furthermore, the analysis of variance found
a significant main effect of the instruction method on our
adapted TLX scale, F(2,18) = 6.76, p = .006. Partici-
pants reported significantly higher task load when using the
speech-only method compared to the multimodal method,
F(1,18) = 10.98, p = .004.

E. Usability

We focused on two aspects of usability in this evaluation:
ease of use and flexibility of method. The analysis of variance
found a significant main effect of the instruction method
on subjective perceptions of ease of use, F'(2,18) = 4.67,
p = .023. Participants rated the multimodal convention
as significantly easier to use than the speech-only method,
F(1,18) = 7.01, p = .016. Regarding the perceived flexibil-
ity, the analysis of variance found a marginal main effect of
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Fig. 6. The participants reported higher cognitive load, as measured through
an adapted TLX scale and linguistic dysfluency, when using the speech-only
method for task instruction compared to the other two methods.

the instruction method on subjective perceptions of method
flexibility, F'(2,18) = 3.05, p = .072. The results showed
that the multimodal convention provided higher flexibility
for the participants in specifying task instructions compared
to the speech-only method, F'(1,18) = 5.94, p = .025.
Overall, the multimodal convention was the most preferred
method. Seven out of the ten participants preferred the
multimodal method over the other two methods:

3

‘... with verbal and gestures, um, was I guess the
most convenient because I could both specify, like,
which objects I wanted to move and exactly where
I wanted them to go, and it was easier to select
them overall.” (P7)

VI. DISCUSSION

Just as a new interactive technology (e.g., touch interfaces)
requires a new set of interaction conventions (e.g., pinch to
zoom in and out, hold and release, and swipe), we argue that
robots necessitate new interaction conventions for effective
use by people. In this paper, we explored a natural, simple
convention for giving pick-and-place instructions to a robot
partner. Our observations of people’s natural behaviors when
giving pick-and-place instructions supported the “Put That
Here” convention that allows people to use common indica-
tive gestures and verbal commands for task specification. The
results of our experiment show that participants were able to
learn how to use the convention quickly and could use it
with ease. The results further indicate that the participants
using the multimodal convention were able to complete their
instructions faster and experienced significantly lower cog-
nitive load during the task than when using the speech-only
method. While we did not observe significant differences be-



tween the multimodal and gesture-only methods, we note that
the participants did not use gestures without accompanying
speech when asked to conduct natural instruction.

A. Universal Conventions for HRI

In this work, we demonstrated that structuring user be-
haviors to conform to learned interaction conventions can
create natural, effective, and easy human-robot interactions
without requiring the extensive technical robot capabilities
that are typically required in human-robot interactions mod-
eled off of human-human interactions. Besides simplifying
the problem of robot understanding of the unbounded space
of human behaviors, abstracting human interactive behaviors
into interaction conventions also has the potential to create
universal human-robot interactions.

Since human behaviors and human-robot interactions can
differ depending on human characteristics, such as culture,
gender, or educational background [39]-[41], robots must
tailor their behavior to individuals during interactions, while
following the norms corresponding to the current cultural
context and avoiding potential pitfalls such as stereotyping.
Since most robots have not reached this level of adaptability,
humans may have to adapt their behaviors and actions to ef-
fectively interact with a robot that has not been personalized
to their characteristics, or, in the worst case, may be unable
to interact with the robot.

If a universal interaction convention is instead used to
structure the human-robot interaction, both the human and
robot interactants will have common ground on the inter-
action structure, facilitating communication and collabora-
tion despite varying human characteristics or contexts. In a
similar vein, human-robot interactions built upon universal
conventions could transcend individual robot platforms or
manufacturers, so that humans do not need to learn new
interaction patterns for each new robot that they encounter.
This idea can already be found in computers and mobile
devices, where conventions such as drag and drop and
touchscreen swipe gestures are universal regardless of the
user’s geographic location or the device’s manufacturer. By
extending the concept of universal interaction conventions to
HRI, we can move one step closer towards making human-
robot interaction accessible for all.

B. Variations of “Put That Here”

The “Put That Here” convention used in this work enables
users to perform tabletop pick-and-place tasks. We envision
several design variations that can extend this convention to
make it applicable for a wider range of task contexts. The
convention currently allows users to instruct the robot to
move multiple objects when they are proximally located to
one another. For future design iterations of this convention,
we plan to explore methods for users to specify multiple
objects that are distant from each other during task in-
struction, analogous to how the ‘Shift’ key on a keyboard
may be used to select multiple items on a screen-based
interface. Similarly, we will investigate how to improve upon
our existing convention so that users may specify distant

locations for object grasping or placement that are not limited
to the constrained tabletop workspace used in this study. We
will consider incorporating deictic gestures or instructional
tools for robot manipulation that have been used in previous
studies, such as laser pointers [42]], [43]], into our convention
to make it more applicable outside the tabletop context.

Lastly, our convention currently supports four classes of
gestures (Fig. [2). However, our user evaluation demonstrated
that participants may use gestures that are not covered by
the four gesture types used in our convention during task
specification (Fig. ] (c)). Therefore, we would like to extend
our convention to incorporate a wider range of gestures, as
well as enable users to extend the convention themselves to
include their own custom gestures. Finally, in this study, our
user evaluation included a limited number of participants. For
future design iterations, we aim to conduct evaluations with
more users to gain a better understanding of user behaviors
and needs in using our multimodal convention.

VII. CONCLUSION

Appropriate interaction conventions that are straightfor-
ward to learn and use can effectively structure communica-
tion between end users and technology. In this paper, we
argue that there exists a need for interaction conventions for
enabling productive human-robot interactions. We studied
a particular multimodal convention—*“Put That Here”—for
situated instruction of pick-and-place tasks. Our empirical
evaluation indicated the usability and learnability of the
multimodal convention. This work highlights the promise of
using learned interaction conventions as a tool for designing
human-robot interactions, particularly for new, technologi-
cally limited, or cross-cultural robotic technologies.
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