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Figure 1: We explore how first-person demonstrations may capture natural behavioral preferences for task performance and
how they can be utilized to enable user-centric robotic assistance in human-robot collaborative assembly tasks.

Abstract

We explore first-person demonstration as an intuitive way of produc-
ing task demonstrations to facilitate user-centric robotic assistance.
First-person demonstration directly captures the human experience
of task performance via head-mounted cameras and naturally in-
cludes productive viewpoints for task actions. We implemented a
perception system that parses natural first-person demonstrations
into task models consisting of sequential task procedures, spatial
configurations, and unique task viewpoints. We also developed a
robotic system capable of interacting autonomously with users as
it follows previously acquired task demonstrations. To evaluate the
effectiveness of our robotic assistance, we conducted a user study
contextualized in an assembly scenario; we sought to determine
how assistance based on a first-person demonstration (user-centric
assistance) versus that informed only by the cover image of the
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official assembly instruction (standard assistance) may shape users’
behaviors and overall experience when working alongside a col-
laborative robot. Our results show that participants felt that their
robot partner was more collaborative and considerate when it pro-
vided user-centric assistance than when it offered only standard
assistance. Additionally, participants were more likely to exhibit
unproductive behaviors, such as using their non-dominant hand,
when performing the assembly task without user-centric assistance.
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• Computer systems organization→ Robotics; • Computing
methodologies→ Vision for robotics.
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1 INTRODUCTION

As we continue to develop collaborative robots to assist people
at work and in the home, it is important to ensure that everyday
users can easily customize, or “program,” their robotic assistance to
meet their needs and that they can comfortably interact with their
robot assistants. These design goals, if met, will lead to enhanced
user experience and long-term adoption of such assistance. In this
work, we explore first-person demonstration as an alternative way
of robot programming by demonstration, in which users program a
collaborative robot by simply performing the task. In this method, a
user’s demonstrated program is recorded by head-mounted cameras
that directly capture rich task contexts and natural user behavior
during task performance (e.g., how their hands are interacting
with various task objects); first-person viewpoints encapsulate a
wealth of subtle behavioral preferences that collaborative robots
can leverage to provide more user-friendly support.

We contextualized our exploration of first-person demonstration
and its use in human-robot collaboration within the domain of
furniture assembly, which often involves common manipulation
tasks (Figure 1). In our exploration, we first developed a percep-
tion system capable of parsing a natural first-person demonstration
into an operational task model. We also developed an autonomous
robotic system that can utilize an acquired task model to assist
people in a user-friendly way; specifically, the robot presents as-
sembly parts to users similarly to how they would perform the
task themselves. We then conducted a user study to evaluate our
systems and examine how first-person demonstration may help
enable user-centric robotic assistance that can positively shape
human-robot collaboration.

In the next section, we review the relevant prior research that
motivates this work. We then describe our method for represent-
ing demonstrated tasks from first-person demonstrations and our
implementation of an autonomous robotic system that provides
user-centric assistance (Section 3). In Section 4, we describe the
user study that sought to evaluate the effectiveness of user-centric
robotic assistance and to explore how such assistance may shape
user experience and behavior during human-robot collaborations.
Finally, we conclude this paper with a discussion of our findings
and the limitations of this work in Section 5.

2 RELATEDWORK

We review relevant prior research from three areas: programming
by demonstration, task representation, and first-person vision.

2.1 Robot Programming by Demonstration
Research on robot programming by demonstration (PbD) [4, 8, 9], or
learning from demonstration, aims to reduce barriers to authoring
custom robot skills for people with diverse backgrounds and needs.
To this end, prior research has explored various authoring methods,
including kinesthetic teaching [1, 20], vision-based demonstrations
[15, 53, 55], teleoperative demonstrations in virtual reality [56],
and behavioral instructions [24, 26, 33, 46, 47, 50], as well as ac-
cessible programming interfaces that involve visual programming
[3, 17, 22, 42] and situated programming [16, 45]. In addition to
the exploration of interfaces and methods for skill authoring, prior

research has also investigated how demonstrated skills may be
applied to a variety of task configurations [2, 15, 27, 52, 55].

This work explores an alternative method for authoring robot
skills. Arguably, the most simple and effective method of task
demonstration is to simply perform the task. In this work, we ex-
plore first-person demonstration, in which head-mounted cameras
capture exactly how a human demonstrator performs a task. We
note that first-person demonstration is different from showing a
task to a learner via a teaching process (e.g., [25, 55]), which requires
consideration and estimation of the learner’s perspective during
the teaching of the task. In contrast, first-person demonstration
allows a learner to directly channel a teacher’s perspective.

Similarly, Yu et al. sought to capture the first-person perspective
by fixing a camera behind a human demonstrator [55]. However,
their setup was unable to acquire dynamic information about the
demonstrator’s head movement, which approximates the demon-
strator’s attentional focus during task demonstration. The most
similar work to ours is perhaps that of Lee and Ryoo [28]; in their
work, a robot learned collaborative behaviors from example videos
in which humans executed the same collaborative behavior from a
first-person viewpoint. However, in their robotic system implemen-
tation, dynamic viewpoint changes from the human demonstration
were not emphasized in the robot reproduction of the collaborative
behavior. In contrast to these prior works, we focus on dynamic
first-person demonstration of complex manipulation tasks.

2.2 Task Representation
To enable effective human-robot collaboration, various task repre-
sentations have been explored, including Finite State Automaton
[38], Hierarchical Task Network (HTN) [19], and Markov Decision
Process [41]. We provide a brief discussion of the HTN due to its
similarity to our proposed FEAsT model detailed in Section 3.1.
An HTN represents a tree structure where a leaf node denotes a
primitive action or goal and a parent node denotes the abstraction
or composition of its children [35]. Prior research on human-robot
collaboration has investigated variations of HTNs (e.g., [10, 19]) and
employed HTNs to enable interactive learning from demonstration
[35], to develop transparent task planners [43], and to generate col-
laborative plans [34]. In this paper, we present a similar hierarchical
structure to represent an egocentric assembly task demonstration,
where first-person viewpoints are an important degree of informa-
tion. We additionally present an algorithm to recover viewpoint
information from the hierarchical structure.

2.3 First-Person Vision
First-person vision (FPV), or egocentric vision, naturally captures
the region of human attention [31]. Applications of FPV have in-
cluded activity recognition [31, 32, 44, 51, 54], object detection
[29, 32], activity-based salient object detection [7], motion predic-
tion [6, 48], and joint attention estimation for social scenarios [49].
In addition to applications involving pure image analysis, FPV has
also been used as a command tool for disabled users to control a
robotic wheelchair [30].

We conjecture that FPV can provide unique, task-relevant infor-
mation critical to complex manipulation skills. For instance, when
assembling a piece of furniture, a person may need to move their



head around from time to time to find better viewpoints for part
alignment and screwing actions. FPV offers the demonstrator’s per-
spective on the various aspects of a task demonstration, including
how their hands interact with objects of interest and when to pay
attention to what; in contrast, fixed, static sensing may not capture
key task aspects due to occlusion. Besides encapsulating key task
information, we believe that FPV implicitly captures appropriate
points of view that match how people naturally perform manipula-
tion tasks. In this work, we seek to understand how a collaborative
robot that presents assembly parts to people in a user-centric way
(i.e., close to their first-person perspective) may shape those users’
task behaviors and experiences of working with the robot.

3 System Implementation

To explore first-person demonstration as an intuitive method of
robot programming and the ways by which such a demonstration
may enhance human-robot collaboration, we developed a system
that parses first-person demonstrations into operational task mod-
els and an autonomous robot system that utilizes our generated task
model to assist users in manipulation tasks. Our implementation
was grounded in the context of furniture assembly (assembling an
IKEA children’s chair). Below, we describe our systems in detail.

3.1 Task Model of First-Person Demonstration
Given a first-person demonstration represented as a sequence of
RGB images, we generated a task model encoding (1) the sequen-
tial procedure of the task, (2) spatial configurations symbolizing
how different parts fit together, and (3) first-person viewpoints
corresponding to task actions (i.e., connecting and screwing).

3.1.1 Task Model We developed the First-person Experience-based
Assembly Tree (FEAsT) model, which hierarchically stores task-
relevant and egocentric viewpoint information for rigid assembly
tasks (Figure 2). In a FEAsT, a leaf node represents a single part used
in the assembly; a parent node represents a sub-assembly, which is
an assembled portion of the overall assembly consisting of two or
more parts; and an edge connecting two nodes represents the kine-
matic constraint between the two nodes, which captures the relative
geometric positions and orientations between the nodes [36]. We
assigned a reference frame to each part and used the position and
orientation of the reference frame to represent the transformation
of that part. The reference frame of a sub-assembly is at the center
between its children’s reference frames and follows the orientation
of its first child’s reference frames. In addition to spatial informa-
tion stored in the connecting edges, the hierarchical tree structure
implicitly encodes the sequential order of the task procedure. One
particularly unique aspect of the FEAsT is that it stores key task
viewpoints from the original human demonstration; this additional
degree of information captures which spatial configuration a hu-
man finds most natural to view a part or set of parts from during
the assembly task. Viewpoint information is key to our design of
user-centric robotic assistance.

A FEAsT can be populated in real time during a human assembly
task demonstration. At the beginning of the demonstration, the tree
is initialized to consist of independent leaf nodes for the individual
assembly parts. As the demonstration progresses, the FEAsT begins
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Figure 2: Top: hierarchical structure of a FEAsT: leaf nodes
are parts; parent nodes are sub-assemblies; edges are kine-
matic constraints between a parent node and child nodes;
and sub-assembly nodes contain relevant first-person view-
points. Bottom: the process of parsing a natural first-person
demonstration into a FEAsT model.

to form a hierarchical structure that encodes the interconnections
between parts. When the user assembles two parts, a parent node is
added to the FEAsT and is connected with edges to the part nodes.
Each parent node stores the first-person viewpoints from when
the human demonstrator performed an assembly action (such as
connecting or screwing) on that particular sub-assembly.

3.1.2 Recognizing Kinematic Constraints Given any two parts, there
may be multiple ways by which they can be assembled together (i.e.,
there may be multiple transformation matrices describing potential
kinematic constraints). In order to recognize specific kinematic
constraints from a task demonstration, our system requires the
structure of assembly parts to be pre-specified in the form of geo-
metric descriptions. A geometric description encodes the unique



structure of a part that allows it to connect to other components.
A part with multiple connecting structures (e.g., dowel) includes
a geometric description for each connecting structure, and a sub-
assembly includes the geometric descriptions of each of its children.
For the children’s chair used in our system, the parts are connected
using dowel/hole pairs. The geometric description for a connecting
pair includes a struct_name (dowel), a corresponding_struct (hole)
and a pos, which is the transformation from the part reference frame
to the dowel reference frame. In this work, geometric descriptions
were generated manually for each part; however, in the future,
these descriptions can be obtained either from the manufacturer or
through an algorithmic analysis of the part structures.

The process of kinematic constraint recognition (i.e., determining
whether two parts are being connected) involves iterating through
all detected parts and sub-assemblies and their geometric descrip-
tions. At each iteration, the system checks whether detected parts
and sub-assemblies have corresponding connecting structures and
whether the position and orientation differences between the re-
spective connecting structures are below empirically determined
thresholds. In the dowel-hole connection case, we used a position
threshold of 0.02meters. For rotation, we obtained the similarity be-
tween two orientations, represented by quaternions, by taking the
absolute value of the dot product and comparing that to a minimum
threshold of 0.98. A kinematic constraint is established between
the part node and sub-assembly node by adding a parent node to
the FEAsT that connects them. The kinematic constraint is encoded
as a transformation based on the pos components. We simplified
detection of object pose by using an AR-tag pose-tracking package.

3.1.3 Recording Key Task Viewpoints Upon recognizing a kine-
matic constraint, which signifies that a part and a sub-assembly are
connected, our system stores the current first-person viewpoint
into the added parent node in the form of the pose (position and
orientation) of the newly combined sub-assembly with respect to
the first-person camera that captures the hand-object interaction.
Additionally, our system records the first-person viewpoint when
the human demonstrator screws the parts together. In our chair as-
sembly context, connecting and screwing are two key task actions;
people usually switch viewpoints when progressing from connect-
ing two parts to screwing them together (Figure 2, Top). To simplify
the detection of a user performing a screwing action, we defined a
screwdriver “home” region. Our system employed a combination
of AR tag tracking and color detection using first-person viewpoint
images to determine whether or not the screwdriver was in the
home region. For our purposes, a screwing action began when the
screwdriver left the home region and ended when it returned. The
system chose the frame in the middle of the screwing sequence as
the point at which to store the first-person viewpoint.

3.1.4 Assembly Task Demonstration The hardware setup for record-
ing first-person demonstrations involved two stacked head-mounted
Logitech C930 cameras. Two cameras were used in order to ensure
that the first-person view would include all task-relevant objects,
with the upper camera being used to show the demonstrator’s view-
point in the form of their approximate gaze, and the lower camera
being used to track their hand movements for action detection.

We conducted a data collection study to obtain natural first-
person demonstrations of the assembly of an IKEA children’s chair.

This study involved 12 participants (7 females, 5 males), aged 18 to
46 (M = 28.58, SD = 10.55), from various educational backgrounds,
including engineering, education, finance, and neuroscience. Each
participant first learned the task by watching a tutorial video and
then constructed the chair wearing a pair of head-mounted cameras;
on average, the assembly task demonstration length was 137.96 s
(SD = 26.52 s). We chose one of the demonstrations to populate
the FEAsT that was used in our human-robot collaborative assem-
bly, described below. Note that the FEAsTs constructed from the
participants’ demonstrations are different because the participants
had varying preferences about the assembly order and viewpoints.
Future work will explore how to learn a common task model from
multiple demonstrations.

3.2 Human-Robot Collaborative Assembly
In this section, we describe an autonomous robot system that uses a
populated FEAsT to facilitate a collaborative chair assembly with a
human partner. Our human-robot collaborative system uses the Uni-
versal Robots UR5 6-DOF robot manipulator, which was mounted
with a two-finger Robotiq gripper.

To begin a collaborative assembly, our system first parses an in-
put FEAsT to obtain the assembly procedure, following Algorithm
1. The parsing process starts by sorting the sub-assembly nodes
based on their height in the tree, which represents their sequential
order in the assembly task. It then iterates through the sorted nodes
and through the ordered task actions (i.e., connecting and screwing)
stored in that node. For each iteration, the system first recovers
the current action’s recorded egocentric viewpoint represented as
a transformation (EcurrNode) from the first-person camera to the
current sub-assembly. It then traverses through all the descendants
of the current node and recovers each descendant’s transforma-
tion (EcurrDesc) with respect to the first-person camera using the
kinematic constraints (descParentEcurrDesc) corresponding to edges
in the FEAsT. If the current descendant is a leaf node (i.e., a part),
the system adds the part’s transformation into a 3D array named

Algorithm 1 First-person demonstration recovery from FEAsT
Require: FEAsT
1: assemblyNodes← non-leaf nodes in the FEAsT
2: sort assemblyNodes by their height
3: partPoseArray← empty ▷ a 3D array that stores the pose of

each part for each action at each node
4: for all currNode ∈ assemblyNodes do
5: for all currAction ∈ ordered task actions in currNode do
6: EcurrNode ← viewpoint of currNode for currAction
7: for all currDesc ∈ descendants of currNode do
8: descParentEcurrDesc← kinematic constraints of currDesc
9: EcurrDesc ← EdescParent ×

descParent EcurrDesc
10: if currDesc is a part then
11: add EcurrDesc in partPoseArray[currNode][currAction]
12: end if
13: end for
14: end for
15: end for
16: return partPoseArray



partPoseArray, where the first, second, and third dimension repre-
sent the nodes (sub-assemblies) in FEAsT, the task actions in the
corresponding node, and the parts that constitute the sub-assembly,
respectively. The robot iterates through partPoseArray to obtain the
appropriate positions and orientations for each part with respect to
a fixed head pose, which it then uses to determine how to present
parts during the collaborative assembly.

After parsing the task sequence, kinematic constraints, and view-
point information, the robot proceeds to interact with the user. Our
system follows a turn-taking style of interaction where the robot
and the user take turns to complete the assembly task. The bottom
pipeline in Figure 4 illustrates the collaborative assembly process.
The process begins with the robot fetching a part (e.g., backrest)
needed in the task and presenting it to the user following the view-
point information for connecting. The user connects the presented
part with the current sub-assembly; the robot then rotates the con-
nected sub-assembly to present the parts to the user using the
viewpoint information for screwing. After the user screws the parts
together, the robot continues by rotating the new sub-assembly to a
pose in which it is easy for the user to perform the next connecting
action. This collaborative process continues until the task is com-
pleted. Due to implementation limitations and consideration of user
safety, we chose a fixed head pose at an average human height as
the reference frame from which the robot calculated the egocentric
viewpoint transformations. In practice, a fixed head pose worked
well since the participants did not move around during the experi-
ment. Our future work will explore how to present parts adaptively
according to real-time head poses. Regardless, the viewpoint infor-
mation obtained from first-person demonstration was found to be
sufficient to provide smooth user-centric robotic assistance.

Our robot system was designed to interact autonomously with
humans to complete the assembly task. In our implementation, we
used the MoveIt! Task Constructor [18] for planning the robot mo-
tions needed in the collaborative assembly. Moreover, to simplify
motion planning, all task parts were given fixed locations for the
robot to fetch them from. In order to achieve autonomous collab-
oration, our system needed to know a user’s action status, which
specified whether they were connecting, screwing, or holding/re-
leasing parts. Methods for recognizing connecting and screwing
actions are described in the previous section. To detect whether
the user is holding a part, we generated hand and part masks and
checked whether their overlap area is greater than 20 pixels for 3
frames. We adapted and trained the light-weight RefineNet [37] on
the Georgia Tech Egocentric Activity (GTEA) datasets [14, 31] to
generate hand masks. A holding action and a releasing action were
considered mutually exclusive. Our system sometimes produced
false negatives when performing user action detection during the
user study; in these cases, the experimenter manually triggered
the next step. The rates of experimenter intervention were 22.92%,
0.0%, 47.50%, and 20.00% for holding, connecting, the beginning of
a screwing action, and the end of a screwing action, respectively.

Throughout the task assembly, the robot provided verbal instruc-
tions to the user. It told the user what to do for the next assembly
step (e.g., “Please connect the previous part to this piece”), provided
information about its actions (e.g., “I am going to open my hand”),
and offered approval words such as “Ok" or “Good work!" to indicate
that a detected user action is correct and that the system will move

forward to the next stage of the procedure. Our system used the
Amazon Polly service to produce verbal instructions.

4 Evaluation

Our evaluation was focused on assessing how user-centric robotic
assistance may influence a user’s behavior during, and their percep-
tion of, a collaboration with a robot. Our central hypothesis is that
robotic assembly assistance based on a first-person demonstration
will lead to better user experience than robotic assistance that does
not consider first-person viewpoints.

4.1 Experimental Task, Conditions, and Design
We contextualized our evaluation in a chair assembly task by design-
ing an experimental exercise in which a UR5 manipulator assisted
participants in assembling an IKEA children’s chair. As shown in
Figure 3, the robot engaged in one of two types of assistance when
guiding participants:

Standard Assistance (control condition): Following the top pipeline
in Figure 4, the robot fetched parts and presented them to partic-
ipants matching the viewpoint shown on the cover page of the
official IKEA assembly manual.

User-Centric Assistance (experimental condition): As shown on
the bottom pipeline in Figure 4, the robot fetched parts and pre-
sented them to users matching the first-person viewpoint extracted
from one of our previously collected human demonstrations.

The robot provided verbal instructions and fetched the parts
of the chair for participants in both conditions. Our user evalua-
tion followed a within-participants design, with each participant
working with the robot in both conditions. We counterbalanced the
order in which the conditions were presented.

4.2 Experimental Procedure
The user evaluation began with the experimenter obtaining in-
formed consent and providing an overview of the experiment to
the participant. The experimenter then helped the participant put
on a pair of head-mounted cameras and performed a camera cali-
bration procedure. After setting up the experimental apparatus, the
experimenter told the participant to follow the robot’s instructions
to complete the chair assembly task. Upon finishing the task, the
participant filled out a questionnaire regarding their experience
working with the robot. This procedure was then repeated for the
other condition. After completing the assembly task in both condi-
tions, the participant provided demographic information and was

Standard Assistance
Control condition

User-Centric Assistance
Experimental condition

Figure 3: Our experimental conditions and setup.
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Figure 4: The pipelines the robot followed for the standard and user-centric assistance conditions used in our user evaluation.
This figure also illustrates how we measured viewpoint changes during task actions.

then interviewed for feedback about their experience. Each partici-
pant was compensated with $5 USD for their participation in the
experiment, which lasted approximately 30 minutes.

4.3 Measures
We employed a combination of objective, behavioral, and subjective
measures to assess participants’ performance and user experience.

4.3.1 Objective Measures We measured how much head move-
ment (i.e., viewpoint change) was involved when the participant
performed the assembly task. The premise behind these measures is
that if a part is presented in an unnatural pose that is awkward for
the user to interact with, then the user will modify their viewpoint
to perform the task action. As shown in Figure 4, for each action,
we defined (1) a presentation point, the moment when the robot
presents a part to the user, and (2) an action point, the moment
when the user conducts either a connecting (inserting dowels into
holes) or screwing action. Since screwing is a continuous action, we
chose a frame that was close to the middle of the frame sequence
and included clearly presented AR tags. We then measured the head
movement from the presentation point to the action point in terms
of distance moved and viewpoint rotated, as defined below:

Distance moved (meters): Euclidean distance between the head
position at the presentation point and the head position at the
action point.

Viewpoint rotated (radians, [0, π ]): Angle of rotation along the
shortest path between the head orientation at the presentation
point and the head orientation at the action point.

4.3.2 Behavioral Measures In addition to measuring head move-
ment during task performance, we wanted to determine how the
type of assistance influenced participants’ behavior during the as-
sembly task. In particular, we measured the number of times the
participants used their non-dominant hands or switched between
hands when performing screwing actions. In addition, we measured
the number of times participants dropped the screwdriver when
performing a screwing action (tool drops).

4.3.3 Subjective Measures Our subjective measures involved per-
ceived teamwork and perceived consideration. The teamwork scale
consisted of seven items (Cronbach’s α = 0.84) and sought to mea-
sure how cooperative and how good of a teammate participants
perceived the robot to be during the interaction. The consideration
scale consisted of six items (Cronbach’s α = 0.87) and aimed to
assess participants’ perceptions of how considerate the robot was
of the user’s actions, tasks, and comfort during the interaction. In
addition to these two scales, we included two task-specific ques-
tions about whether or not it was easy for the participants to align
and screw the chair pieces together.
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4.4 Participants
A total of 21 participants were recruited from the local community.
One participant was excluded from our data analysis due to a system
failure during the experiment. The resulting 20 participants (10
females, 10 males) were aged 18 to 65 (M = 27.70, SD = 13.86) and
had a variety of educational backgrounds, including engineering,
applied math, biology, music, and international studies. Nineteen
out of 20 participants reported themselves as right-handed, with
one participant being left-handed.

4.5 Results
Figure 5 and Table 1 summarize our results based on a one-way
repeated-measures analysis of variance (ANOVA), in which the
type of assistance—either standard or user-centric—was set as a
fixed effect, and the participant was set as a random effect.

4.5.1 Objective Measures Our data indicated that when collaborat-
ing with the robot providing user-centric assistance, participants
had less distance changed (p = .002) and moderately less rotation
(p = .090) of their head movements when conducting screwing ac-
tions than in the standard assistance collaboration. At the same time,
our results showed only a marginal difference (p = .052) in distance
changed and no significant difference in head rotation between
the two conditions when the participants performed connecting
actions. When reviewing the selected first-person demonstration

employed in our study, we noticed that the IKEA manual viewpoint
was quite similar to the demonstrated viewpoint for connecting
actions; therefore, we speculate that the similarity in the viewpoints
resulted in no substantial differences observed in these measures.

4.5.2 Behavioral Measures Our results revealed that participants
were more likely to use their non-dominant hand or switch hands
(p < .001) during the assembly task when working with the ro-
bot providing standard assistance compared to the robot providing
user-centric assistance. When reviewing the video recordings of the
interactions, we observed that the fixed—and sometimes awkward—
presentation of the chair parts in the control condition prompted
participants to engage in unproductive hand use. In contrast, par-
ticipants were able to more often use their dominant hand to carry
out task actions when provided with user-centric assistance.

Moreover, we observed that the participants tended to drop the
screwdriver more often (p = .061) when working with the robot
providing standard assistance than when working with the user-
centric robot. For reference, the number of tool drops averaged over
the 12 participants from whomwe collected human demonstrations
in Section 3.1 was 0.42 (SD = 0.90). While we were unable to
identify a direct relationship between non-dominant hand use and
tool drops, we speculate that these two behaviors are possibly
associated and might have influenced each other.



Table 1: Statistical results of our measures.

Objective measures

Distance changed

Distance changed

0.33 (SD=0.07)

0.19 (SD=0.05)

0.27 (SD=0.06)

0.23 (SD=0.05)

Viewpoint rotated

Viewpoint rotated

0.48 (SD=0.12)

0.30 (SD=0.09)

0.42 (SD=0.11)

0.34 (SD=0.09)

Control Experimental Statistical test results

F(1,37)=11.15, p=.002**
ηp

2=0.234

F(1,37)=4.03, p=.052
ηp

2=0.101

F(1,37)=3.04, p=.090
ηp

2=0.076

F(1,37)=2.30, p=.138
ηp

2=0.060

Behavioral measures

Tool drops

Unproductive
hand use

0.65 (SD=0.81)

0.75 (SD=1.12)

0.25 (SD=0.44)

2.65 (SD=0.81)

F(1,38)=3.73, p=.061
ηp

2=0.089

F(1,38)=37.79, p<.001***
ηp

2=0.499

Subjective measures

Teamwork

Consideration

5.42 (SD=1.15)

5.83 (SD=0.80)

6.09 (SD=0.69)

4.86 (SD=1.28)

F(1,38)=4.88, p=.033*
ηp

2=0.114
F(1,38)=8.27, p=.007**

ηp
2=0.179

Easy to align

Easy to screw

F(1,38)=7.01, p=.012*
ηp

2=0.156

F(1,38)=4.80, p=.035*
ηp

2=0.112

5.75 (SD=1.16)

6.15 (SD=1.14)

6.55 (SD=0.69)

5.15 (SD=1.69)

Control Experimental Statistical test results

Control Experimental Statistical test results

Screwing action

Connecting action

†

†

†

4.5.3 SubjectiveMeasures Participants reported significantly greater
perceived teamwork (p = .033) with the user-centric robot com-
pared to the standard robot. They also perceived the user-centric
robot to be more considerate (p = .007) in terms of accommodating
how they preferred to perform the task; for example, P15 com-
mented that “[The user-centric robot] could actually feel when I was
uncomfortable, like I couldn’t actually put the pieces together in a
really comfortable way, so he just kind of helped me do that, and it
was really nice because I felt like we were working together.”

Additionally, the participants agreed that the user-centric robotic
assistance allowed them to align pieces and screw them together
more easily than in the standard assistance condition—which did
not consider user task viewpoints—as described by P2 : “The [user-
centric] robot did a slight nice movement into the position where I
was kind of facing it, so it was easier for me to screw.”

5 DISCUSSION

We explored how first-person demonstration may be used to gener-
ate user-centric assistance in human-robot collaborative assembly.
Specifically, the viewpoints from a first-person demonstration en-
able a robot to deliver an assembly part to a human partner in a
user-friendly way. Our user evaluation shows that, when work-
ing with a robot offering user-centric assistance, participants felt
that the robot was a more considerate collaborator and were less
likely to engage in unproductive behavior, such as using their non-
dominant hand or switching which hand they used during the
screwing actions. Below, we discuss additional findings, implica-
tions for collaborative robotics, and the limitations of this work.

5.1 A Closer Look at User Experience
While our results indicated that user-centric assistance enhanced
user experience overall, there seems to be a “sweet spot” for how

considerate a robot should be. One participant commented, “The
[user-centric] robot was trying to do almost too much. So by trying
to make it easier for me, it was making it. . . not easier. . . ” (P13). The
perception of trying too hard put the participant off and could
possibly lead to negative interaction outcomes [23]. Moreover, it is
important to consider how the robot’s motion should be accounted
for when designing user-centric assistance. One participant stated,
“I guess the discomfort [of working with the user-centric robot] was
just kind of not knowing where . . . how it would move the chair.” (P17).
Future work should explore the integration of legible motions [11,
12, 40] into user-centric assistance. Beyond user experience, user-
centric assistance could help aid in task performance. One user
mentioned that the user-centric viewpoints could have helped them
spot a task mistake: “In the [standard condition], I forgot to screw
[one screw] and I didn’t realize. And [in the user-centric condition],
it’s easier to see like, ‘Oh! There is a screw missing for me!”’ (P17).

5.2 Implications for Collaborative Robotics
First-person vision offers unique advantages to collaborative ro-
botics. It approximates a person’s attentional focus, and therefore
can be used to estimate task intent [21] (e.g., what part the user
might need next) and identify errors in collaboration [5] (e.g., the
user focuses on the wrong part). Moreover, for real-world applica-
tions in the wild, fixed external sensing is generally infeasible; FPV
serves as an alternative sensing modality and can therefore bring
human-robot collaboration into a wider range of applicable do-
mains, including search and rescue and in-home assistance. Finally,
the common robot programming method used for collaborative
robots in manufacturing is a hybrid use of kinesthetic teaching
and visual programming; however, the unfamiliarity of a robot’s
kinematics and programming interface can pose challenges to ev-
eryday users when authoring robot programs. We believe that
“programming by doing” via first-person demonstration presents
new opportunities for a wider array of users to reskill robots.

5.3 Limitations & Future Work
While our results suggest the potential of first-person demonstra-
tion in creating more productive and natural human-robot collab-
oration, the limitations of the present work also highlight direc-
tions for future research. Our current human-robot collaborative
system operates on a selected FEAsT constructed from a human
demonstration. Future work should investigate how to abstract task
information from multiple first-person demonstrations; these inves-
tigations will involve exploring different task representations (e.g.,
[10, 19]) and learning approaches (e.g., [13, 39]). Moreover, in our
human-robot collaboration study, our system simply transformed
previously acquired viewpoint information onto a fixed, predeter-
mined head pose; this decision was mostly due to limitations in
motion planning and consideration of user safety. However, our
future work will focus on enabling real-time adjustment of robot
motions and task-level execution to achieve adaptive collaboration.
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